
Classification, Clustering, and Data Mining Applications
by Banks, David L.; House, Leanna; Mcmorris, Frederick R.; Arabie, Phipps; Gaul, WolfgangRent Textbook
Rent Digital
New Textbook
We're Sorry
Sold Out
Used Textbook
We're Sorry
Sold Out
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
Table of Contents
New Methods in Cluster Analysis | |
Thinking Ultrametrically | p. 3 |
Clustering by Vertex Density in a Graph | p. 15 |
Clustering by Ant Colony Optimization | p. 25 |
A Dynamic Cluster Algorithm Based on Lr Distances for Quantitative Data | p. 33 |
The Last Step of a New Divisive Monothetic Clustering Method: the Gluing-Back Criterion | p. 43 |
Standardizing Variables in K-means Clustering | p. 53 |
A Self-Organizing Map for Dissimilarity Data | p. 61 |
Another Version of the Block EM Algorithm | p. 69 |
Controlling the Level of Separation of Components in Monte Carlo Studies of Latent Class Models | p. 77 |
Fixing Parameters in the Constrained Hierarchical Classification Method: Application to Digital Image Segmentation | p. 85 |
New Approaches for Sum-of-Diameters Clustering | p. 95 |
Spatial Pyramidal Clustering Based on a Tessellation | p. 105 |
Modern Nonparametrics | |
Relative Projection Pursuit and its Application | p. 123 |
Priors for Neural Networks | p. 141 |
Combining Models in Discrete Discriminant Analysis Through a Committee of Methods | p. 151 |
Phoneme Discrimination with Functional Multi-Layer Perceptrons | p. 157 |
PLS Approach for Clusterwise Linear Regression on Functional Data | p. 167 |
On Classification and Regression Trees for Multiple Responses | p. 177 |
Subsetting Kernel Regression Models Using Genetic Algorithm and the Information Measure of Complexity | p. 185 |
Cherry-Picking as a Robustness Tool | p. 197 |
Classification and Dimension Reduction | |
Academic Obsessions and Classification Realities: Ignoring Practicalities in Supervised Classification | p. 209 |
Modified Biplots for Enhancing Two-Class Discriminant Analysis | p. 233 |
Weighted Likelihood Estimation of Person Locations in an Unfolding Model for Polytomous Responses | p. 241 |
Classification of Geospatial Lattice Data and their Graphical Representation | p. 251 |
Degenerate Expectation-Maximization Algorithm for Local Dimension Reduction | p. 259 |
A Dimension Reduction Technique for Local Linear Regression | p. 269 |
Reducing the Number of Variables Using Implicative Analysis | p. 277 |
Optimal Discretization of Quantitative Attributes for Association Rules | p. 287 |
Symbolic Data Analysis | |
Clustering Methods in Symbolic Data Analysis | p. 299 |
Dependencies in Bivariate Interval-Valued Symbolic Data | p. 319 |
Clustering of Symbolic Objects Described by Multi-Valued and Modal Variables | p. 325 |
A Hausdorff Distance Between Hyper-Rectangles for Clustering Interval Data | p. 333 |
Kolmogorov-Smirnov for Decision Trees on Interval and Histogram Variables | p. 341 |
Dynamic Cluster Methods for Interval Data Based on Mahalanobis Distances | p. 351 |
A Symbolic Model-Based Approach for Making Collaborative Group Recommendations | p. 361 |
Probabilistic Allocation of Aggregated Statistical Units in Classification Trees for Symbolic Class Description | p. 371 |
Building Small Scale Models of Multi-Entity Databases by Clustering | p. 381 |
Taxonomy and Medicine | |
Phylogenetic Closure Operations and Homoplasy-Free Evolution | p. 395 |
Consensus of Classification Systems, with Adams' Results Revisited | p. 417 |
Symbolic Linear Regression with Taxonomies | p. 429 |
Determining Horizontal Gene Transfers in Species Classification: Unique Scenario | p. 439 |
Active and Passive Learning to Explore a Complex Metabolism Data Set | p. 447 |
Mathematical and Statistical Modeling of Acute Inflammation | p. 457 |
Combining Functional MRI Data on Multiple Subjects | p. 469 |
Classifying the State of Parkinsonism by Using Electronic Force Platform Measures of Balance | p. 477 |
Subject Filtering for Passive Biometrie Monitoring | p. 485 |
Text Mining | |
Mining Massive Text Data and Developing Tracking Statistics | p. 495 |
Contributions of Textual Data Analysis to Text Retrieval | p. 511 |
Automated Resolution of Noisy Bibliographic References | p. 521 |
Choosing the Right Bigrams for Information Retrieval | p. 531 |
A Mixture Clustering Model for Pseudo Feedback in Information Retrieval | p. 541 |
Analysis of Cross-Language Open-Ended Questions Through MFACT | p. 553 |
Inferring User's Information Context from User Profiles and Concept Hierarchies | p. 563 |
Database Selection for Longer Queries | p. 575 |
Contingency Tables and Missing Data | |
An Overview of Collapsibility | p. 587 |
Generalized Factor Analyses for Contingency Tables | p. 597 |
A PLS Approach to Multiple Table Analysis | p. 607 |
Simultaneous Row and Column Partitioning in Several Contingency Tables | p. 621 |
Missing Data and Imputation Methods in Partition of Variables | p. 631 |
The Treatment of Missing Values and its Effect on Classifier Accuracy | p. 639 |
Clustering with Missing Values: No Imputation Required | p. 649 |
Table of Contents provided by Publisher. All Rights Reserved. |
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.