Acronyms |
|
xi | |
List of Symbols |
|
xiii | |
1 Preliminaries |
|
1 | (28) |
|
1.1 Motivation for the Cross-Entropy Method |
|
|
1 | (1) |
|
1.2 Random Experiments and Probability Distributions |
|
|
2 | (4) |
|
|
6 | (2) |
|
1.4 Efficiency of Estimators |
|
|
8 | (2) |
|
|
10 | (6) |
|
1.6 The Score Function Method * |
|
|
16 | (3) |
|
1.7 Generating Random Variables |
|
|
19 | (5) |
|
1.7.1 The Inverse-Transform Method |
|
|
19 | (2) |
|
|
21 | (1) |
|
1.7.3 The Composition Method |
|
|
21 | (1) |
|
1.7.4 The Acceptance-Rejection Method |
|
|
22 | (2) |
|
|
24 | (5) |
2 A Tutorial Introduction to the Cross-Entropy Method |
|
29 | (30) |
|
|
29 | (2) |
|
2.2 Methodology: Two Examples |
|
|
31 | (5) |
|
2.2.1 A Rare-Event Simulation Example |
|
|
31 | (3) |
|
2.2.2 A Combinatorial Optimization Example |
|
|
34 | (2) |
|
2.3 The CE Method for Rare-Event Simulation |
|
|
36 | (5) |
|
2.4 The CE-Method for Combinatorial Optimization |
|
|
41 | (4) |
|
|
45 | (12) |
|
2.5.1 The Max-Cut Problem |
|
|
46 | (5) |
|
2.5.2 The Travelling Salesman Problem |
|
|
51 | (6) |
|
|
57 | (2) |
3 Efficient Simulation via Cross-Entropy |
|
59 | (70) |
|
|
59 | (3) |
|
|
62 | (5) |
|
3.3 Kullback-Leibler Cross-Entropy |
|
|
67 | (5) |
|
3.4 Estimation of Rare-Event Probabilities |
|
|
72 | (3) |
|
|
75 | (8) |
|
|
83 | (7) |
|
3.7 The Root-Finding Problem |
|
|
90 | (1) |
|
|
91 | (5) |
|
3.9 Equivalence Between SLR and TLR |
|
|
96 | (4) |
|
3.10 Stationary Waiting Time of the GI/G/1 Queue |
|
|
100 | (4) |
|
3.11 Big-Step CE Algorithm |
|
|
104 | (1) |
|
|
105 | (13) |
|
3.12.1 Sum of Weibull Random Variables |
|
|
106 | (2) |
|
3.12.2 Sum of Pareto Random Variables |
|
|
108 | (1) |
|
3.12.3 Stochastic Shortest Path |
|
|
109 | (2) |
|
|
111 | (5) |
|
3.12.5 Two Non-Markovian Queues with Feedback |
|
|
116 | (2) |
|
3.13 Appendix: The Sum of Two Weibulls |
|
|
118 | (3) |
|
|
121 | (8) |
4 Combinatorial Optimization via Cross-Entropy |
|
129 | (58) |
|
|
129 | (3) |
|
4.2 The Main CE Algorithm for Optimization |
|
|
132 | (4) |
|
4.3 Adaptive Parameter Updating in Stochastic Node Networks |
|
|
136 | (2) |
|
4.3.1 Conditional Sampling |
|
|
137 | (1) |
|
4.3.2 Degenerate Distribution |
|
|
138 | (1) |
|
4.4 Adaptive Parameter Updating in Stochastic Edge Networks |
|
|
138 | (2) |
|
4.4.1 Parameter Updating for Markov Chains |
|
|
139 | (1) |
|
4.4.2 Conditional Sampling |
|
|
140 | (1) |
|
4.4.3 Optimal Degenerate Transition Matrix |
|
|
140 | (1) |
|
|
140 | (5) |
|
4.6 The Partition Problem |
|
|
145 | (2) |
|
4.7 The Travelling Salesman Problem |
|
|
147 | (7) |
|
4.8 The Quadratic Assignment Problem |
|
|
154 | (2) |
|
4.9 Numerical Results for SNNs |
|
|
156 | (12) |
|
4.9.1 Synthetic Max-Cut Problem |
|
|
157 | (3) |
|
|
160 | (2) |
|
|
162 | (6) |
|
4.9.4 Empirical Computational Complexity |
|
|
168 | (1) |
|
4.10 Numerical Results for SENs |
|
|
168 | (6) |
|
|
169 | (1) |
|
4.10.2 Multiple Solutions |
|
|
170 | (1) |
|
4.10.3 Experiments with Sparse Graphs |
|
|
171 | (2) |
|
4.10.4 Numerical Results for the QAP |
|
|
173 | (1) |
|
|
174 | (11) |
|
4.11.1 Two Tour Generation Algorithm for the TSP |
|
|
174 | (3) |
|
4.11.2 Speeding up Trajectory Generation |
|
|
177 | (2) |
|
4.11.3 An Analysis of Algorithm 4.5.2 for a Partition Problem |
|
|
179 | (2) |
|
4.11.4 Convergence of CE Using the Best Sample |
|
|
181 | (4) |
|
|
185 | (2) |
5 Continuous Optimization and Modifications |
|
187 | (16) |
|
5.1 Continuous Multi-Extremal Optimization |
|
|
187 | (3) |
|
5.2 Alternative Reward Functions |
|
|
190 | (1) |
|
5.3 Fully Adaptive CE Algorithm |
|
|
191 | (3) |
|
5.4 Numerical Results for Continuous Optimization |
|
|
194 | (2) |
|
5.5 Numerical Results for FACE |
|
|
196 | (4) |
|
|
200 | (3) |
6 Noisy Optimization with CE |
|
203 | (24) |
|
|
203 | (1) |
|
6.2 The CE Algorithm for Noisy Optimization |
|
|
204 | (3) |
|
6.3 Optimal Buffer Allocation in a Simulation-Based Environment [9] |
|
|
207 | (6) |
|
6.4 Numerical results for the BAP |
|
|
213 | (3) |
|
6.5 Numerical Results for the Noisy TSP |
|
|
216 | (9) |
|
|
225 | (2) |
7 Applications of CE to COPs |
|
227 | (24) |
|
|
227 | (7) |
|
7.2 Single Machine Total Weighted Tardiness Problem |
|
|
234 | (3) |
|
7.3 Single Machine Common Due Date Problem |
|
|
237 | (1) |
|
7.4 Capacitated Vehicle Routing Problem |
|
|
238 | (2) |
|
|
240 | (7) |
|
|
247 | (4) |
8 Applications of CE to Machine Learning |
|
251 | (20) |
|
|
251 | (3) |
|
|
253 | (1) |
|
8.2 The Markov Decision Process and Reinforcement Learning |
|
|
254 | (6) |
|
8.2.1 Policy Learning via the CE Method |
|
|
256 | (3) |
|
|
259 | (1) |
|
8.3 Clustering and Vector Quantization |
|
|
260 | (8) |
|
|
263 | (5) |
|
|
268 | (3) |
A Example Programs |
|
271 | (16) |
|
A.1 Rare Event Simulation |
|
|
272 | (2) |
|
|
274 | (2) |
|
A.3 Continuous Optimization via the Normal Distribution |
|
|
276 | (1) |
|
|
277 | (4) |
|
|
281 | (2) |
|
|
283 | (2) |
|
|
285 | (2) |
References |
|
287 | (10) |
Index |
|
297 | |