Friendly Introduction to Number Theory, A (Classic Version)

by
Edition: 4th
Format: Paperback
Pub. Date: 2017-02-13
Publisher(s): Pearson
  • This product is included in:
    This product is included in Pearson+
  • Complimentary 7-Day eTextbook Access - Read more
    When you rent or buy this book, you will receive complimentary 7-day online access to the eTextbook version from your PC, Mac, tablet, or smartphone. Feature not included on Marketplace Items.
List Price: $133.32

Buy New

Usually Ships in 2-3 Business Days
$132.65

Buy Used

In Stock
$99.99

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Pearson+:180 day access
Access to one Digital book
$50.94
Online:180 day access
Downloadable:180 day subscription
$77.99
Online:1825 day access
Downloadable:Lifetime Access
$113.99
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$50.94*

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

For one-semester undergraduate courses in Elementary Number Theory


This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.

 

A Friendly Introduction to Number Theory, 4th Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet–number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results.

Author Biography

Joseph H. Silverman is a Professor of Mathematics at Brown University. He received his Sc.B. at Brown and his Ph.D. at Harvard, after which he held positions at MIT and Boston University before joining the Brown faculty in 1988. He has published more than 100 peer-reviewed research articles and seven books in the fields of number theory, elliptic curves, arithmetic geometry, arithmetic dynamical systems, and cryptography.  He is a highly regarded teacher, having won teaching awards from Brown University and the Mathematical Association of America, as well as a Steele Prize for Mathematical Exposition from the American Mathematical Society. He has supervised the theses of more than 25 Ph.D. students, is a co-founder of NTRU Cryptosystems, Inc., and has served as an elected member of the American Mathematical Society Council and Executive Committee.

Table of Contents

Preface

Flowchart of Chapter Dependencies

Introduction

1. What Is Number Theory?

2. Pythagorean Triples

3. Pythagorean Triples and the Unit Circle

4. Sums of Higher Powers and Fermat’s Last Theorem

5. Divisibility and the Greatest Common Divisor

6. Linear Equations and the Greatest Common Divisor

7. Factorization and the Fundamental Theorem of Arithmetic

8. Congruences

9. Congruences, Powers, and Fermat’s Little Theorem

10. Congruences, Powers, and Euler’s Formula

11. Euler’s Phi Function and the Chinese Remainder Theorem

12. Prime Numbers

13. Counting Primes

14. Mersenne Primes

15. Mersenne Primes and Perfect Numbers

16. Powers Modulo m and Successive Squaring

17. Computing kth Roots Modulo m

18. Powers, Roots, and “Unbreakable” Codes

19. Primality Testing and Carmichael Numbers

20. Squares Modulo p

21. Is -1 a Square Modulo p? Is 2?

22. Quadratic Reciprocity

23. Proof of Quadratic Reciprocity

24. Which Primes Are Sums of Two Squares?

25. Which Numbers Are Sums of Two Squares?

26. As Easy as One, Two, Three

27. Euler’s Phi Function and Sums of Divisors

28. Powers Modulo p and Primitive Roots

29. Primitive Roots and Indices

30. The Equation X 4 + Y 4 = Z 4

31. Square–Triangular Numbers Revisited

32. Pell’s Equation

33. Diophantine Approximation

34. Diophantine Approximation and Pell’s Equation

35. Number Theory and Imaginary Numbers

36. The Gaussian Integers and Unique Factorization

37. Irrational Numbers and Transcendental Numbers

38. Binomial Coefficients and Pascal’s Triangle

39. Fibonacci’s Rabbits and Linear Recurrence Sequences

40. Oh, What a Beautiful Function

41. Cubic Curves and Elliptic Curves

42. Elliptic Curves with Few Rational Points

43. Points on Elliptic Curves Modulo p

44. Torsion Collections Modulo p and Bad Primes

45. Defect Bounds and Modularity Patterns

46. Elliptic Curves and Fermat’s Last Theorem

 

Further Reading

Index

 

*47. The Topsy-Turvey World of Continued Fractions [online]

*48. Continued Fractions, Square Roots, and Pell’s Equation [online]

*49. Generating Functions [online]

*50. Sums of Powers [online]

*A. Factorization of Small Composite Integers [online]

*B. A List of Primes [online]

 

*These chapters are available online.

 

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.