Preface |
|
xix | |
Acknowledgments |
|
xxi | |
|
|
1 | (10) |
|
Digital Image Processing: Problems and Applications |
|
|
1 | (3) |
|
Image Representation and Modeling |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
Image Reconstruction from Projections |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Two-Dimensional Systems and Mathematical Preliminaries |
|
|
11 | (38) |
|
|
11 | (1) |
|
|
11 | (2) |
|
Linear Systems and Shift Invariance |
|
|
13 | (2) |
|
|
15 | (5) |
|
Properties of the Fourier Transform |
|
|
16 | (2) |
|
Fourier Transform of Sequences (Fourier Series) |
|
|
18 | (2) |
|
The Z-Transform or Laurent Series |
|
|
20 | (1) |
|
|
21 | (1) |
|
Optical and Modulation Transfer Functions |
|
|
21 | (1) |
|
|
22 | (6) |
|
|
22 | (1) |
|
|
23 | (2) |
|
Transposition and Conjugation Rules |
|
|
25 | (1) |
|
Toeplitz and Circulant Matrices |
|
|
25 | (1) |
|
Orthogonal and Unitary Matrices |
|
|
26 | (1) |
|
Positive Definiteness and Quadratic Forms |
|
|
27 | (1) |
|
|
27 | (1) |
|
Block Matrices and Kronecker Products |
|
|
28 | (3) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (4) |
|
|
31 | (1) |
|
Gaussian or Normal Distribution |
|
|
32 | (1) |
|
Gaussian Random Processes |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
Orthogonality and Independence |
|
|
34 | (1) |
|
The Karhunen Loeve (KL) Transform |
|
|
34 | (1) |
|
|
35 | (2) |
|
|
35 | (1) |
|
Separable and Isotropic Covariance Functions |
|
|
36 | (1) |
|
The Spectral Density Function |
|
|
37 | (2) |
|
|
38 | (1) |
|
Some Results from Estimation Theory |
|
|
39 | (2) |
|
|
40 | (1) |
|
The Orthogonality Principle |
|
|
40 | (1) |
|
Some Results from Information Theory |
|
|
41 | (8) |
|
|
42 | (1) |
|
|
42 | (1) |
|
The Rate Distortion Function |
|
|
43 | (1) |
|
|
44 | (3) |
|
|
47 | (2) |
|
|
49 | (31) |
|
|
49 | (1) |
|
Light, Luminance, Brightness, and Contrast |
|
|
49 | (5) |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (3) |
|
|
60 | (2) |
|
Color Matching and Reproduction |
|
|
62 | (4) |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (5) |
|
Color Difference Measures |
|
|
71 | (2) |
|
|
73 | (2) |
|
Temporal Properties of Vision |
|
|
75 | (5) |
|
|
75 | (1) |
|
Critical Fusion Frequency (CFF) |
|
|
75 | (1) |
|
Spatial versus Temporal Effects |
|
|
75 | (1) |
|
|
76 | (2) |
|
|
78 | (2) |
|
Image Sampling and Quantization |
|
|
80 | (52) |
|
|
80 | (4) |
|
|
80 | (1) |
|
|
81 | (2) |
|
Image Display and Recording |
|
|
83 | (1) |
|
Two-Dimensional Sampling Theory |
|
|
84 | (5) |
|
|
84 | (1) |
|
Sampling Versus Replication |
|
|
85 | (1) |
|
Reconstruction of the Image from Its Samples |
|
|
85 | (2) |
|
Nyquist Rate, Aliasing, and Foldover Frequencies |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
Extensions of Sampling Theory |
|
|
89 | (4) |
|
|
90 | (1) |
|
Sampling Theorem for Random Fields |
|
|
90 | (1) |
|
|
90 | (1) |
|
Nonrectangular Grid Sampling and Interlacing |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Practical Limitations in Sampling and Reconstruction |
|
|
93 | (6) |
|
|
93 | (1) |
|
Display Aperture/Interpolation Function |
|
|
94 | (4) |
|
|
98 | (1) |
|
Moire Effect and Flat Field Response |
|
|
99 | (1) |
|
|
99 | (2) |
|
The Optimum Mean Square or Lloyd-Max Quantizer |
|
|
101 | (12) |
|
The Uniform Optimal Quantizer |
|
|
103 | (1) |
|
Properties of the Optimum Mean Square Quantizer |
|
|
103 | (9) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
114 | (1) |
|
The Optimum Mean Square Uniform Quantizer for Nonuniform Densities |
|
|
115 | (1) |
|
Examples, Comparison, and Practical Limitations |
|
|
115 | (3) |
|
Analytic Models for Practical Quantizers |
|
|
118 | (1) |
|
Quantization of Complex Gaussian Random Variables |
|
|
119 | (1) |
|
|
119 | (13) |
|
|
120 | (1) |
|
Pseudorandom Noise Quantization |
|
|
120 | (1) |
|
Halftone Image Generation |
|
|
121 | (1) |
|
|
122 | (2) |
|
|
124 | (4) |
|
|
128 | (4) |
|
|
132 | (57) |
|
|
132 | (2) |
|
Two-Dimensional Orthogonal and Unitary Transforms |
|
|
134 | (4) |
|
Separable Unitary Transforms |
|
|
134 | (1) |
|
|
135 | (2) |
|
Kronecker Products and Dimensionality |
|
|
137 | (1) |
|
Dimensionality of Image Transforms |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
Properties of Unitary Transforms |
|
|
138 | (3) |
|
Energy Conservation and Rotation |
|
|
138 | (1) |
|
Energy Compaction and Variances of Transform Coefficients |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
The One-Dimensional Discrete Fourier Transform (DFT) |
|
|
141 | (4) |
|
Properties of the DFT/Unitary DFT |
|
|
141 | (4) |
|
|
145 | (5) |
|
Properties of the Two-Dimensional DFT |
|
|
147 | (3) |
|
|
150 | (4) |
|
Properties of the Cosine Transform |
|
|
151 | (3) |
|
|
154 | (1) |
|
Properties of the Sine Transform |
|
|
154 | (1) |
|
|
155 | (4) |
|
Properties of the Hadamard Transform |
|
|
157 | (2) |
|
|
159 | (2) |
|
Properties of the Haar Transform |
|
|
161 | (1) |
|
|
161 | (2) |
|
Properties of the Slant Transform |
|
|
162 | (1) |
|
|
163 | (12) |
|
|
164 | (1) |
|
Properties of the KL Transform |
|
|
165 | (10) |
|
A Sinusoidal Family of Unitary Transforms |
|
|
175 | (1) |
|
Approximation to the KL Transform |
|
|
176 | (1) |
|
Outer Product Expansion and Singular Value Decomposition |
|
|
176 | (4) |
|
Properties of the SVD Transform |
|
|
177 | (3) |
|
|
180 | (9) |
|
|
180 | (5) |
|
|
185 | (4) |
|
Image Representation by Stochastic Models |
|
|
189 | (44) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
One-Dimensional Causal Models |
|
|
190 | (6) |
|
Autoregressive (AR) Models |
|
|
190 | (1) |
|
|
191 | (2) |
|
Application of AR Models in Image Processing |
|
|
193 | (1) |
|
Moving Average (MA) Representations |
|
|
194 | (1) |
|
Autoregressive Moving Average (ARMA) Representations |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
One-Dimensional Spectral Factorization |
|
|
196 | (2) |
|
|
197 | (1) |
|
|
198 | (1) |
|
AR Models, Spectral Factorization, and Levinson Algorithm |
|
|
198 | (2) |
|
The Levinson-Durbin Algorithm |
|
|
198 | (2) |
|
Noncausal Representations |
|
|
200 | (4) |
|
|
201 | (1) |
|
Noncausal MVRs for Autoregressive Sequences |
|
|
201 | (1) |
|
|
202 | (2) |
|
Optimum Interpolation of Images |
|
|
204 | (1) |
|
Linear Prediction in Two Dimensions |
|
|
204 | (9) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
Minimum Variance Prediction |
|
|
206 | (1) |
|
Stochastic Representation of Random Fields |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (3) |
|
Stability of Two-Dimensional Systems |
|
|
212 | (1) |
|
Two-Dimensional Spectral Factorization and Spectral Estimation Via Prediction Models |
|
|
213 | (6) |
|
|
214 | (1) |
|
Realization of Noncausal MVRs |
|
|
215 | (1) |
|
Realization of Causal and Semicausal MVRs |
|
|
216 | (1) |
|
Realization via Orthogonality Condition |
|
|
216 | (3) |
|
Spectral Factorization via the Wiener-Doob Homomorphic Transformation |
|
|
219 | (4) |
|
|
220 | (1) |
|
|
220 | (2) |
|
|
222 | (1) |
|
|
222 | (1) |
|
Image Decomposition, Fast KL Transforms, and Stochastic Decoupling |
|
|
223 | (3) |
|
|
223 | (1) |
|
Noncausal Models and Fast KL Transforms |
|
|
224 | (1) |
|
Semicausal Models and Stochastic Decoupling |
|
|
225 | (1) |
|
|
226 | (7) |
|
|
227 | (3) |
|
|
230 | (3) |
|
|
233 | (34) |
|
|
233 | (2) |
|
|
235 | (6) |
|
|
235 | (1) |
|
Clipping and Thresholding |
|
|
235 | (3) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
Image Subtraction and Change Detection |
|
|
240 | (1) |
|
|
241 | (3) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
244 | (12) |
|
Spatial Averaging and Spatial Low-pass Filtering |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
246 | (3) |
|
Other Smoothing Techniques |
|
|
249 | (1) |
|
Unsharp Masking and Crispening |
|
|
249 | (1) |
|
Spatial Low-pass, High-pass and Band-pass Filtering |
|
|
250 | (2) |
|
Inverse Contrast Ratio Mapping and Statistical Scaling |
|
|
252 | (1) |
|
Magnification and Interpolation (Zooming) |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
253 | (3) |
|
|
256 | (4) |
|
Generalized Linear Filtering |
|
|
256 | (2) |
|
|
258 | (1) |
|
Generalized Cepstrum and Homomorphic Filtering |
|
|
259 | (1) |
|
Multispectral Image Enhancement |
|
|
260 | (2) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
261 | (1) |
|
False Color and Pseudocolor |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (4) |
|
|
263 | (2) |
|
|
265 | (2) |
|
Image Filtering and Restoration |
|
|
267 | (75) |
|
|
267 | (1) |
|
|
268 | (7) |
|
|
269 | (4) |
|
Detector and Recorder Models |
|
|
273 | (1) |
|
|
273 | (2) |
|
Sampled Image Observation Models |
|
|
275 | (1) |
|
Inverse and Wiener Filtering |
|
|
275 | (9) |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
276 | (3) |
|
|
279 | (5) |
|
Finite Impulse Response (FIR) Wiener Filters |
|
|
284 | (6) |
|
|
284 | (1) |
|
|
285 | (2) |
|
Spatially Varying FIR Filters |
|
|
287 | (3) |
|
Other Fourier Domain Filters |
|
|
290 | (2) |
|
|
291 | (1) |
|
|
291 | (1) |
|
Filtering Using Image Transforms |
|
|
292 | (3) |
|
|
292 | (1) |
|
|
293 | (1) |
|
Generalized Wiener Filtering |
|
|
293 | (2) |
|
Filtering by Fast Decompositions |
|
|
295 | (1) |
|
Smoothing Splines and Interpolation |
|
|
295 | (2) |
|
|
297 | (1) |
|
|
297 | (2) |
|
Constrained Least Squares Restoration |
|
|
297 | (1) |
|
|
298 | (1) |
|
Generalized Inverse, SVD, and Iterative Methods |
|
|
299 | (5) |
|
|
299 | (1) |
|
Minimum Norm Least Squares (MNLS) Solution and the Generalized Inverse |
|
|
300 | (1) |
|
One-step Gradient Methods |
|
|
301 | (1) |
|
|
301 | (1) |
|
The Conjugate Gradient Method |
|
|
302 | (1) |
|
Separable Point Spread Functions |
|
|
303 | (1) |
|
Recursive Filtering For State Variable Systems |
|
|
304 | (3) |
|
|
304 | (3) |
|
|
307 | (1) |
|
Casual Models and Recursive Filtering |
|
|
307 | (4) |
|
A Vector Recursive Filter |
|
|
308 | (2) |
|
|
310 | (1) |
|
|
310 | (1) |
|
A Two-Stage Recursive Filter |
|
|
310 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
|
Semicausal Models and Semirecursive Filtering |
|
|
311 | (2) |
|
|
312 | (1) |
|
Digital Processing of Speckle Images |
|
|
313 | (3) |
|
|
313 | (2) |
|
Speckle Reduction: N-Look Method |
|
|
315 | (1) |
|
Spatial Averaging of Speckle |
|
|
315 | (1) |
|
|
315 | (1) |
|
Maximum Entropy Restoration |
|
|
316 | (3) |
|
Distribution-Entropy Restoration |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
319 | (1) |
|
|
320 | (1) |
|
Coordinate Transformation and Geometric Correction |
|
|
320 | (2) |
|
|
322 | (1) |
|
Extrapolation of Bandlimited Signals |
|
|
323 | (7) |
|
|
323 | (1) |
|
|
323 | (1) |
|
Extrapolation Via Prolate Spheroidal Wave Functions (PSWFs) |
|
|
324 | (1) |
|
Extrapolation by Error Energy Reduction |
|
|
324 | (2) |
|
Extrapolation of Sampled Signals |
|
|
326 | (1) |
|
Minimum Norm Least Squares (MNLS) Extrapolation |
|
|
326 | (1) |
|
|
327 | (1) |
|
Discrete Prolate Spheroidal Sequences (DPSS) |
|
|
327 | (1) |
|
Mean Square Extrapolation |
|
|
328 | (1) |
|
Generalization to Two Dimensions |
|
|
328 | (2) |
|
|
330 | (12) |
|
|
331 | (4) |
|
|
335 | (7) |
|
Image Analysis and Computer Vision |
|
|
342 | (89) |
|
|
342 | (2) |
|
Spatial Feature Extraction |
|
|
344 | (2) |
|
|
344 | (1) |
|
|
344 | (2) |
|
|
346 | (1) |
|
|
347 | (10) |
|
|
348 | (2) |
|
|
350 | (1) |
|
Laplace Operators and Zero Crossings |
|
|
351 | (2) |
|
|
353 | (2) |
|
Performance of Edge Detection Operators |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
357 | (5) |
|
|
357 | (1) |
|
|
358 | (1) |
|
Edge Linking and Heuristic Graph Searching |
|
|
358 | (1) |
|
|
359 | (3) |
|
|
362 | (1) |
|
|
362 | (13) |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
364 | (6) |
|
|
370 | (4) |
|
|
374 | (1) |
|
|
375 | (2) |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
377 | (4) |
|
|
377 | (1) |
|
Moment Representation Theorem |
|
|
378 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
380 | (1) |
|
Applications of Moment Invariants |
|
|
381 | (1) |
|
|
381 | (9) |
|
|
381 | (3) |
|
|
384 | (3) |
|
|
387 | (3) |
|
|
390 | (4) |
|
|
391 | (1) |
|
|
392 | (2) |
|
|
394 | (6) |
|
|
394 | (4) |
|
|
398 | (1) |
|
|
399 | (1) |
|
Scene Matching and Detection |
|
|
400 | (7) |
|
|
400 | (1) |
|
Template Matching and Area Correlation |
|
|
400 | (3) |
|
|
403 | (1) |
|
|
404 | (3) |
|
|
407 | (7) |
|
Amplitude Thresholding or Window Slicing |
|
|
407 | (2) |
|
|
409 | (2) |
|
Boundary-based Approaches |
|
|
411 | (1) |
|
Region-based Approaches and Clustering |
|
|
412 | (1) |
|
|
413 | (1) |
|
|
413 | (1) |
|
Classification Techniques |
|
|
414 | (7) |
|
|
414 | (4) |
|
Nonsupervised Learning or Clustering |
|
|
418 | (3) |
|
|
421 | (10) |
|
|
422 | (3) |
|
|
425 | (6) |
|
Image Reconstruction From Projections |
|
|
431 | (45) |
|
|
431 | (3) |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
433 | (1) |
|
Magnetic Resonance Imaging |
|
|
434 | (1) |
|
Projection-based Image Processing |
|
|
434 | (1) |
|
|
434 | (5) |
|
|
434 | (2) |
|
|
436 | (1) |
|
Properties of the Radon Transform |
|
|
437 | (2) |
|
The Back-projection Operator |
|
|
439 | (3) |
|
|
439 | (1) |
|
|
440 | (2) |
|
|
442 | (2) |
|
|
443 | (1) |
|
The Inverse Radon Transform |
|
|
444 | (4) |
|
|
445 | (1) |
|
Convolution Back-projection Method |
|
|
446 | (1) |
|
Filter Back-projection Method |
|
|
446 | (1) |
|
Two-Dimensional Filtering via the Radon Transform |
|
|
447 | (1) |
|
Convolution/Filter Back-projection Algorithms: Digital Implementation |
|
|
448 | (4) |
|
|
448 | (1) |
|
|
448 | (2) |
|
Convolution Back-projection Algorithm |
|
|
450 | (1) |
|
Filter Back-projection Algorithm |
|
|
451 | (1) |
|
Reconstruction Using a Parallel Pipeline Processor |
|
|
452 | (1) |
|
Radon Transform of Random Fields |
|
|
452 | (6) |
|
|
452 | (4) |
|
Radon Transform Properties for Random Fields |
|
|
456 | (1) |
|
Projection Theorem for Random Fields |
|
|
457 | (1) |
|
Reconstruction from Blurred Noisy Projections |
|
|
458 | (4) |
|
|
458 | (1) |
|
The Optimum Mean Square Filter |
|
|
458 | (1) |
|
|
458 | (4) |
|
|
462 | (2) |
|
|
462 | (1) |
|
Reconstruction of Magnetic Resonance Images |
|
|
463 | (1) |
|
|
464 | (1) |
|
|
465 | (3) |
|
The Reconstruction Problem as a Set of Linear Equations |
|
|
465 | (1) |
|
Algebraic Reconstruction Techniques |
|
|
466 | (2) |
|
Three-Dimensional Tomography |
|
|
468 | (2) |
|
Three-Dimensional Reconstruction Algorithms |
|
|
469 | (1) |
|
|
470 | (6) |
|
|
470 | (3) |
|
|
473 | (3) |
|
|
476 | (90) |
|
|
476 | (3) |
|
|
476 | (1) |
|
Data Compression versus Bandwidth Compression |
|
|
477 | (1) |
|
|
477 | (2) |
|
Subsampling, Coarse Quantization, Frame Repetition, and Interlacing |
|
|
479 | (1) |
|
|
479 | (4) |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (2) |
|
|
483 | (1) |
|
|
483 | (15) |
|
|
483 | (1) |
|
Feedback versus Feedforward Prediction |
|
|
484 | (1) |
|
Distortionless Predictive Coding |
|
|
485 | (1) |
|
Performance Analysis of DPCM |
|
|
486 | (2) |
|
|
488 | (2) |
|
|
490 | (1) |
|
|
491 | (2) |
|
|
493 | (1) |
|
|
494 | (1) |
|
|
495 | (2) |
|
|
497 | (1) |
|
|
498 | (6) |
|
The Optimum Transform Coder |
|
|
498 | (1) |
|
|
499 | (2) |
|
|
501 | (1) |
|
Bit Allocation and Rate-Distortion Characteristics |
|
|
501 | (3) |
|
Transform Coding of Images |
|
|
504 | (14) |
|
Two-Dimensional Coding Algorithm |
|
|
504 | (3) |
|
Transform Coding Performances Trade-offs and Examples |
|
|
507 | (1) |
|
Zonal versus Threshold Coding |
|
|
508 | (2) |
|
|
510 | (2) |
|
|
512 | (1) |
|
|
513 | (2) |
|
Transform Coding under Visual Criterion |
|
|
515 | (1) |
|
Adaptive Transform Coding |
|
|
515 | (1) |
|
Summary of Transform Coding |
|
|
516 | (2) |
|
Hybrid Coding and Vector DPCM |
|
|
518 | (3) |
|
|
518 | (2) |
|
|
520 | (1) |
|
Hybrid Coding Conclusions |
|
|
521 | (1) |
|
|
521 | (11) |
|
|
521 | (1) |
|
|
521 | (1) |
|
Conditional Replenishment |
|
|
522 | (1) |
|
Adaptive Predictive Coding |
|
|
522 | (2) |
|
Predictive Coding with Motion Compensation |
|
|
524 | (3) |
|
|
527 | (2) |
|
Three-Dimensional Transform Coding |
|
|
529 | (3) |
|
Image Coding in the Presence of Channel Errors |
|
|
532 | (8) |
|
The Optimum Mean Square Decoder |
|
|
532 | (1) |
|
The Optimum Encoding Rule |
|
|
533 | (1) |
|
Optimization of PCM Transmission |
|
|
534 | (2) |
|
Channel Error Effects in DPCM |
|
|
536 | (1) |
|
Optimization of Transform Coding |
|
|
537 | (3) |
|
Coding of Two Tone Images |
|
|
540 | (13) |
|
|
540 | (6) |
|
|
546 | (1) |
|
Prediction Differential Quantization |
|
|
547 | (1) |
|
|
547 | (1) |
|
CCITT Modified Relative Element Address Designate Coding |
|
|
548 | (3) |
|
|
551 | (1) |
|
|
552 | (1) |
|
|
553 | (1) |
|
|
553 | (1) |
|
Color and Multispectral Image Coding |
|
|
553 | (4) |
|
|
557 | (9) |
|
|
557 | (4) |
|
|
561 | (5) |
Index |
|
566 | |