Preface |
|
ix | |
|
|
1 | (16) |
|
|
1 | (1) |
|
|
1 | (4) |
|
|
5 | (1) |
|
Distributions related to the Normal distribution |
|
|
6 | (3) |
|
|
9 | (1) |
|
|
10 | (4) |
|
|
14 | (3) |
|
|
17 | (26) |
|
|
17 | (1) |
|
|
17 | (13) |
|
Some principles of statistical modelling |
|
|
30 | (5) |
|
Notation and coding for explanatory variables |
|
|
35 | (3) |
|
|
38 | (5) |
|
Exponential Family and Generalized Linear Models |
|
|
43 | (14) |
|
|
43 | (1) |
|
Exponential family of distributions |
|
|
44 | (2) |
|
Properties of distributions in the exponential family |
|
|
46 | (3) |
|
Generalized linear models |
|
|
49 | (1) |
|
|
50 | (3) |
|
|
53 | (4) |
|
|
57 | (12) |
|
|
57 | (1) |
|
Example: Failure times for pressure vessels |
|
|
57 | (5) |
|
Maximum likelihood estimation |
|
|
62 | (2) |
|
Poisson regression example |
|
|
64 | (3) |
|
|
67 | (2) |
|
|
69 | (16) |
|
|
69 | (1) |
|
Sampling distribution for score statistics |
|
|
70 | (2) |
|
Taylor series approximations |
|
|
72 | (1) |
|
Sampling distribution for maximum likelihood estimators |
|
|
73 | (2) |
|
Log-likelihood ratio statistic |
|
|
75 | (1) |
|
Sampling distribution for the deviance |
|
|
76 | (4) |
|
|
80 | (2) |
|
|
82 | (3) |
|
|
85 | (30) |
|
|
85 | (1) |
|
|
85 | (5) |
|
Multiple linear regression |
|
|
90 | (5) |
|
|
95 | (11) |
|
|
106 | (2) |
|
|
108 | (2) |
|
|
110 | (5) |
|
Binary Variables and Logistic Regression |
|
|
115 | (20) |
|
Probability distributions |
|
|
115 | (1) |
|
Generalized linear models |
|
|
116 | (1) |
|
|
116 | (5) |
|
General logistic regression model |
|
|
121 | (3) |
|
Goodness of fit statistics |
|
|
124 | (3) |
|
|
127 | (1) |
|
|
128 | (1) |
|
Example: Senility and WAIS |
|
|
129 | (2) |
|
|
131 | (4) |
|
Nominal and Ordinal Logistic Regression |
|
|
135 | (16) |
|
|
135 | (1) |
|
|
135 | (2) |
|
Nominal logistic regression |
|
|
137 | (6) |
|
Ordinal logistic regression |
|
|
143 | (4) |
|
|
147 | (1) |
|
|
148 | (3) |
|
Count Data, Poisson Regression and Log-Linear Models |
|
|
151 | (20) |
|
|
151 | (1) |
|
|
152 | (4) |
|
Examples of contingency tables |
|
|
156 | (5) |
|
Probability models for contingency tables |
|
|
161 | (1) |
|
|
162 | (2) |
|
Inference for log-linear models |
|
|
164 | (1) |
|
|
164 | (3) |
|
|
167 | (1) |
|
|
168 | (3) |
|
|
171 | (20) |
|
|
171 | (2) |
|
Survivor functions and hazard functions |
|
|
173 | (4) |
|
Empirical survivor function |
|
|
177 | (3) |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
183 | (2) |
|
|
185 | (2) |
|
|
187 | (4) |
|
Clustered and Longitudinal Data |
|
|
191 | (22) |
|
|
191 | (2) |
|
Example: Recovery from stroke |
|
|
193 | (4) |
|
Repeated measures models for Normal data |
|
|
197 | (5) |
|
Repeated measures models for non-Normal data |
|
|
202 | (1) |
|
|
203 | (3) |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (4) |
Software |
|
213 | (2) |
References |
|
215 | (6) |
Index |
|
221 | |