Natural Fibers, Biopolymers, and Biocomposites

by ;
Edition: 1st
Format: Hardcover
Pub. Date: 2005-04-08
Publisher(s): CRC Press
List Price: $255.00

Buy New

Usually Ships in 5-7 Business Days
$254.75

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:180 Days access
Downloadable:180 Days
$214.50
Online:365 Days access
Downloadable:365 Days
$253.50
Online:1825 Days access
Downloadable:Lifetime Access
$390.00
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$214.50*

Used Textbook

We're Sorry
Sold Out

Summary

The only source available today that focuses on biobased materials, this book discusses the combination of fibers with polymer matrices from both non-renewable and renewable resources. It explains the rise of petrochemical and plastic products, the problems associated in their disposal, and how biopolymers offer a realistic solution to these problems. The authors discuss recent trends and opportunities for the future use of biocomposites as alternatives to petroleum-based composites, integrating the principles of sustainability, industrial ecology, eco-efficiency, and green chemistry and engineering into the development of the next generation of materials, products, and processes.

Table of Contents

Natural Fibers, Biopolymers, and Biocomposites: An Introduction
1(36)
Amar K. Mohanty
Manjusri Misra
Lawrence T. Drzal
Susan E. Selke
Bruce R. Harte
Georg Hinrichsen
Introduction
2(2)
Motivation: Biobased Materials vs. Environmental Impact
4(1)
What Are Biocomposites?
4(2)
Natural/Biofibers as Reinforcements in Biocomposites
6(4)
Biodegradable/Biobased Polymers as Matrices for Biocomposite Applications
10(11)
Biodegradable Polymers from Starch and Cellulose
12(1)
Biobased/Biodegradable Plastics from Soybeans and Other Plant Resources
13(1)
Biodegradable Polyesters from Renewable Resources and Petroleum Resources
14(5)
Biobased Polymeric Materials from Mixed Resources (Renewable and Petroleum Resources)
19(2)
Biocomposites as Alternatives to Petroleum-Based Composites: Recent Trends and Opportunities for the Future
21(6)
Sustainable Biobased Products: New Materials for a New Economy
27(2)
Conclusions
29(8)
Acknowledgments
30(1)
References
31(6)
Plant Fibers as Reinforcement for Green Composites
37(72)
Alexander Bismarck
Supriya Mishra
Thomas Lampke
Introduction
39(6)
Plant Fiber Composition and Structure
45(5)
Fiber Production Chain
50(2)
Agricultural Fiber Crop Cultivation
52(7)
Harvesting Bast Fiber Crops
53(1)
Fiber Extraction, Separation and Processing
54(1)
Dew or Field Retting
55(1)
Stand-Retting
55(1)
Cold-Water Retting
55(1)
Warm-Water Retting
56(1)
Mechanical or Green Retting
57(1)
Wet-Retting Processes
57(1)
Ultrasound Retting
57(1)
Steam Explosion Method
57(1)
The Duralin Process
57(1)
Enzyme Retting
58(1)
Chemical and Surfactant Retting
58(1)
Impact on Fiber Properties: Different Fiber Separation/Retting Procedures
59(6)
Fiber Treatment and Modification
65(1)
Bast Fibers
66(14)
Flax (Linum usitatissimum L., Linaceae) Fibers
69(3)
Hemp (Cannabis sativa L., Cannabaceae) Fibers
72(2)
Jute (Corchorus capsularis, Tiliaceae) Fibers
74(3)
Kenaf (Hibiscus cannabinus L., Malvaceae) Fibers
77(1)
Ramie (Boehmeria nivea L. and Boehmeria viridis, Urticaceae) Fibers
77(2)
(Stinging) Nettle (Urtica dioica L., Urticaceae) Fibers
79(1)
Leaf Fibers
80(10)
Sisal (Agave sisalana, Liliaceae) Fibers
80(3)
Henequen (Agave fourcroydes, Liliaceae) Fibers
83(2)
Pineapple (Anannus comosus, Bromeliaceae) Leaf Fibers (PALF)
85(2)
Abaca (Musa textilis Nee, Musaceae) Fibers
87(1)
Oil Palm (Elaeis guineensis, Palmacea) Fibers
87(3)
Seed Fibers
90(1)
Cotton (Gossypium spp., Malvaceae)
90(1)
Fruit Fibers
90(3)
Coconut Husk or Coir (Cocos nucifera, Palmae) Fibers
90(3)
Stalk Fibers: (Cereal) Straw Fibers
93(1)
Conclusion
94(2)
Outlook
96(13)
Acknowledgments
97(1)
References
97(12)
Processing of Bast Fiber Plants for Industrial Application
109(32)
Friedrich Munder
Christian Furll
Heinz Hempel
Introduction
111(1)
Present Growing of Bast Fiber Plants Worldwide---Volume and Yield
112(1)
Composition of Bast Fiber Plants
112(1)
Demands on Bast Fibers for Various Industrial Applications
113(1)
Harvesting
114(2)
Cutting and Drying
114(1)
Retting
115(1)
Baling and Storage
116(1)
Processing of Natural Fiber Plants
116(15)
Process Overview and Description
116(3)
Opening of the Bales and Shortening of the Stalks
119(2)
Elimination of Metallic Impurities and Stones
121(1)
Metering of Plant Straw
121(2)
Decortication
123(1)
Definition and Principles of Decortication
123(1)
Breaking Rollers
123(2)
Hammer Mills without Integrated Cleaning Effect
125(1)
Hammer Mills with Integrated Cleaning Effect
125(1)
Fiber Cleaning
126(1)
Working Principles and Tools
126(1)
Scutching Turbine/Tambour
127(1)
Multiple Ultracleaner
127(1)
Comb Shaker
128(1)
Opening of the Fibers
128(1)
Object of Fiber Opening
128(1)
Opener
128(1)
Carding Machine
128(1)
Cutting of Fibers into a Defined Length
129(1)
Baling of Long Fibers
130(1)
Cleaning of Waste Air
131(1)
Components Arising from Processing and Fiber Yields
131(1)
Mechanical Properties of Processed Fibers
132(5)
Fiber Length
132(1)
Fineness
133(2)
Tensile Strength
135(1)
Elongation
136(1)
Cleanness
136(1)
Comparative Valuation of Technologies and Fiber Data
137(1)
Operational Data
137(1)
Fiber Data
137(1)
Economic Aspects
138(3)
References
139(2)
Recent Developments in Retting and Measurement of Fiber Quality in Natural Fibers: Pro and Cons
141(18)
Roy B. Dodd
Danny E. Akin
Introduction
142(7)
Dew Retting with Glyphosate
143(1)
Enzyme Retting
143(5)
Chemical/Mechanical Retting
148(1)
Standards for Flax Fibers
149(4)
Color
152(1)
Fineness
152(1)
Trash (Nonfiber) Components
153(1)
Conclusions
153(6)
References
155(4)
Alternative Low-Cost Biomass for the Biocomposites Industry
159(18)
Douglas D. Stokke
Introduction
160(1)
Wood Residues
161(2)
Wood Processing Residue
161(1)
Forest Residues
162(1)
Biomass Alternatives
163(9)
Recycled Materials
164(1)
Municipal Solid Waste
164(1)
Construction and Demolition Waste
165(1)
Waste Paper
166(1)
Other
166(1)
Dedicated Biomass Crops
166(2)
Agricultural Production Residues
168(3)
Agricultural Processing Residues
171(1)
Further Considerations
172(1)
Conclusion
173(4)
Acknowledgments
173(1)
References
173(4)
Fiber-Matrix Adhesion in Natural Fiber Composites
177(54)
Pedro J. Herrera Franco
Alex Valadez-Gonzalez
Introduction
180(2)
Properties of Natural Fibers
182(3)
Isolation of Natural Fibers
183(1)
Fiber Geometry
184(1)
Cellulose Crystallinity
184(1)
Hydrophilicity of Cellulose
185(1)
The Fiber-Matrix Interphase
185(1)
Fiber Surface Modification Methods
186(4)
Physical Methods of Modification
186(1)
Alkali Swelling and Substitution Reactions
187(1)
Impregnation of Fibers
188(1)
Chemical Modification
188(1)
Silane Treatments
189(1)
Fiber-Matrix Adhesion
190(5)
Testing of Adhesion in Fiber-Matrix Composites: Micromechanical Characterization
191(4)
Experimental Procedure and Materials
195(4)
Materials
195(1)
Fiber Surface Treatments
196(1)
Adsorption Isotherm
197(1)
X-ray Photoelectron Spectroscopy (XPS)
197(1)
Infrared Spectroscopy (FTIR)
197(1)
Pullout Test Sample Preparation
198(1)
The Single-Fiber Fragmentation Test Sample Preparation
198(1)
Elaboration of the Composite
198(1)
Scanning Electron Microscopy (SEM)
199(1)
Results
199(9)
Surface Treatments
199(4)
Adsorption Isotherms
203(3)
X-ray Photoelectron Spectroscopy (XPS)
206(2)
Infrared Spectroscopy (FTIR)
208(5)
Fiber-Matrix Adhesion: Characterization of the Adhesion Level Using Micromechanical Techniques
213(4)
Single-Fiber Fragmentation Test
217(1)
Effect of Fiber-Matrix Adhesion on Mechanical Properties
218(6)
Tensile Properties
218(3)
Iosipescu Shear Strength
221(3)
Conclusions
224(7)
References
225(6)
Natural Fiber Composites in Automotive Applications
231(30)
Brett C. Suddell
William J. Evans
Introduction: History of Natural Fiber Applications within the Motor Industry
232(1)
Materials
233(2)
Wood Fiber Composites
235(1)
Route to Market
236(1)
Harvesting
236(3)
Retting
239(1)
Fiber Collection and Storage
239(1)
Licensing
240(1)
Markets
240(2)
Manufacturing Methods
242(1)
Matrices
242(1)
Thermoplastics
243(1)
Thermosets
243(1)
The Use of Thermoplastics and Thermosets
243(1)
Structure of the Automotive Components Market
244(1)
Mechanical Characterization
244(1)
Current Automotive Applications
244(2)
Interior Components
246(4)
Exterior Components
250(1)
Benefits
251(2)
Limitations
253(1)
Driving Forces
253(1)
Issues to Address
254(1)
Future Outlook
255(1)
Summary
256(5)
References
256(5)
Natural Fiber Composites for Building Applications
261(30)
Brajeshwar Singh
Manorama Gupta
Introduction
262(1)
Natural Fiber Composites in Buildings---An Experience
262(2)
Natural Fibers
264(1)
Surface Modification of Natural Fibers
264(7)
Fiber-Coupling Agent Interaction
266(1)
Modified Fiber-Resin Interaction
267(1)
Chemically Treated Fibers in Polymer Composites
267(4)
Properties of Natural Fiber Composites
271(2)
Weathering Studies
273(1)
Natural Fiber-Based Building Materials
274(13)
Laminates/Panels
275(2)
Door Shutters
277(1)
Jute Pultruded Door Frames
278(2)
Roofing Sheets
280(2)
Composite Shuttering Plates
282(2)
Dough Molding Compounds
284(3)
Concluding Remarks
287(4)
Acknowledgments
287(1)
References
287(4)
Thermoset Biocomposites
291(56)
Dipa Ray
Jogeswari Rout
Introduction
292(2)
Materials
294(8)
Thermosetting Resins
294(4)
Natural Fibers
298(4)
Thermoset: Natural Fiber Bonding and the Effect of Moisture
302(4)
Surface Modification of Natural Fibers
306(1)
Thermoset Biocomposites
307(33)
Fabrication Techniques
307(1)
Hand Layup
307(1)
Press Molding
308(1)
Filament Winding
308(1)
Pultrusion
308(1)
Properties and Structure
308(1)
Mechanical Properties
308(1)
Jute-Thermoset Composites
309(6)
Coir-Thermoset Composites
315(3)
Sisal--Thermoset Composites
318(2)
Pineapple Leaf Fiber-Thermoset Composites
320(1)
Sunhemp--Thermoset Composites
321(1)
Straw--Thermoset Composites
322(1)
Banana Fiber--Thermoset Composites
322(1)
Other Lignocellulosic Fiber--Thermoset Composites
323(1)
Dynamic Mechanical Properties
324(2)
Fatigue Properties
326(3)
Fracture Characteristics
329(2)
Effect of Hybridization
331(1)
Application
332(8)
Biodegradability
340(1)
Conclusion
340(7)
Acknowledgments
341(1)
References
341(6)
Thermoplastic Wood Fiber Composites
347(44)
Shankar Godavarti
Introduction
348(3)
Raw Materials
351(10)
Wood
351(1)
Structure, Composition, and Properties
351(2)
Softwood vs. Hardwood
353(2)
Matrix Polymers
355(1)
Thermoplastics
356(1)
Structure---Property
357(1)
Coupling Agents
358(1)
Types of Coupling Agents
359(1)
Characteristics Imparted by Coupling Agents
359(1)
Methods to Manufacture Composite
359(1)
Modification of the Wood Fiber
360(1)
Compatibilization
360(1)
Coupling, in situ Reactions
361(1)
Processing
361(18)
Introduction
361(1)
Compounding
362(1)
Processing Technology
362(6)
Process Characterization
368(1)
Extrusion
368(2)
Processing Technology
370(2)
Process Characterization
372(1)
Injection Molding
373(1)
Processing Technology
374(2)
Process Characterization
376(3)
Other Process Platforms
379(1)
Foam Technology
380(4)
Materials
382(1)
Processing
383(1)
Novel Technologies
384(1)
Future
385(6)
References
386(5)
Bamboo-Based Ecocomposites and Their Potential Applications
391(16)
Kazuo Kitagawa
Umaru S. Ishiaku
Machiko Mizoguchi
Hiroyuki Hamada
Introduction
392(4)
Materials
394(1)
Processing
394(2)
Mechanical Properties
396(8)
Bamboo Content and Surface Treatment
396(2)
Flexural Properties
398(1)
Impact Test
399(1)
Polymer Blending
399(4)
Soil Biodegradability
403(1)
Conclusions
404(3)
References
405(2)
Oil Palm Fiber-Thermoplastic Composites
407(28)
Hj D. Rozman
Zainal A. Mohd Ishak
Umaru S. Ishiaku
Introduction
408(3)
Oil Palm Fibers
411(20)
Morphological Properties of Oil Palm Fiber in Comparison with Hardwood and Softwood
411(1)
Availability of Oil Palm Biomass
411(1)
Research and Development on Oil Palm Fibers--Thermoplastic Composites
412(1)
Mechanical Properties of High-Density Polyethylene (HDPE) Composites Filled with OPF and EFB
412(4)
Mechanical Properties of Various Thermoplastic Composites Filled with EFB
416(1)
The Effect of Compounding Techniques
416(4)
The Effect of Surface Chemical Treatments
420(6)
The Effect of Oil Extraction
426(5)
Conclusions
431(4)
References
432(3)
Natural Fiber--Rubber Composites and Their Applications
435(38)
Seena Joseph
Maya Jacob
Sabu Thomas
Introduction: Advantages and Disadvantages of Using Natural Fibers in Composites
436(1)
Natural Fibers
437(5)
Bast Fibers
438(1)
Bagasse
439(1)
Flax
439(1)
Hemp
439(1)
Jute
439(1)
Kenaf
440(1)
Ramie
440(1)
Leaf Fibers
440(1)
Banana
440(1)
Sisal
441(1)
Pineapple
441(1)
Seed Fibers
441(1)
Coir
441(1)
Oil Palm
442(1)
Rubber Matrices
442(8)
Natural Rubber
442(2)
Styrene Butadiene Rubber
444(1)
Butyl Rubber
445(1)
Halogenated Butyl
446(1)
Butadiene Rubber
447(1)
Nitrile Rubber
447(1)
Ethylene Propylene Diene Rubber
448(1)
Silicone Rubber
449(1)
Thermoplastic Elastomers
449(1)
Short Fiber-Reinforced Rubber Composites
450(20)
Theory of Reinforcement
451(2)
Factors Affecting Reinforcement
453(1)
Mechanical Properties
454(4)
Fiber-Rubber Adhesion
458(4)
Dynamic Properties
462(2)
Rheological and Aging Studies
464(5)
Processing
469(1)
Milling
469(1)
Calendering
469(1)
Injection Molding
469(1)
Extrusion
469(1)
Applications
470(1)
Conclusion
470(3)
References
471(2)
Straw-Based Biomass and Biocomposites
473(24)
Xiaoqun Mo
Donghai Wang
Xiuzhi S. Sun
Introduction
474(1)
Structure and Chemical Composition of Straw
475(3)
Anatomy and Morphology
475(1)
Physical and Chemical Properties
476(2)
Straw-Based Particleboards and Fiberboards
478(11)
Types of Resins
478(1)
Synthetic Resins
478(1)
Methylene Diphenyl Diisocyanate and Polymeric Methylene Diphenyl Diisocyanate Resins
478(2)
UF Resins and PF Resins
480(2)
Protein-Based Resins
482(1)
Other Resins
483(1)
Pretreatment of Straw for Straw-Based Composites
483(1)
Mechanical Treatments
483(1)
Chemical and Enzyme Treatments
484(3)
Straw--Plastic Composites
487(2)
Current Status and Industrial Applications
489(2)
Conclusion
491(6)
References
491(6)
Sorona® Polymer: Present Status and Future Perspectives
497(30)
Joseph V. Kurian
Development of Sustainable Technologies
499(2)
Introduction
499(1)
Sustainable Growth
500(1)
History and Development of Sorona
501(5)
History
501(1)
Uniqueness of Sorona
502(1)
Molecular Structure and Effects on Mechanical Properties
502(1)
How Do Molecular Shape and Crystalline Structure Translate into Beneficial Properties?
503(3)
Other Properties
506(1)
Starting Materials
506(6)
1,3-Propanediol
506(1)
PDO from Traditional (Chemical) Sources
507(1)
Bio-PDO
508(2)
DMT/TPA
510(1)
Terephthalic Acid (TPA)
510(1)
Dimethyl Terephthalate (DMT)
511(1)
TPA vs. DMT
512(1)
Other Materials
512(1)
Chemistry and Technology of Polymerization
512(5)
Polymerization Process
512(1)
Terephthalic Acid Process
512(1)
Esterification
512(1)
Polycondensation
513(1)
Dimethyl Terephthalate Process
514(1)
Transesterification
514(1)
Batch Process
514(1)
Continuous Process
515(1)
Make 3GT at a 2GT Plant?
516(1)
Remelt Process
517(1)
Polymer Shaping
517(3)
Fibers: Apparel and Carpets
517(2)
Films
519(1)
Nonwovens
519(1)
Engineering Components
520(1)
Monofilaments
520(1)
Applications and End Uses
520(3)
Apparel
520(1)
Bicomponents
520(2)
Fiber Blends
522(1)
Floor Coverings
522(1)
Nonwovens
522(1)
Engineering Markets
522(1)
Other Markets
523(1)
Creating the Future
523(1)
Direction and Vision
523(1)
Realization
523(1)
Conclusion
523(4)
Acknowledgment
524(1)
References
524(1)
Endnotes: Patent References
525(2)
Polylactic Acid Technology
527(52)
David E. Henton
Patrick Gruber
Jim Lunt
Jed Randall
Introduction
528(3)
Lactic Acid
531(1)
Life Cycle Analysis
532(4)
Polymerization of Lactide
536(2)
PLA Physical Properties
538(25)
Linear Optical Copolymer Structures and Blends
538(2)
Density
540(1)
Glass Transition and the Amorphous Phase
540(2)
Rheology
542(1)
Melt Rheology of Linear PLA
542(2)
Melt Stability
544(1)
Solution Properties
544(1)
Branching
545(2)
Solid-State Viscoelastic Properties
547(1)
Crystallinity
547(1)
Morphology
547(3)
Degree of Crystallinity
550(2)
Crystallization Kinetics
552(1)
Stereocomplex
553(1)
Stress-Induced Crystallization
554(1)
Degradation and Hydrolysis
555(1)
Hydrolysis
555(3)
Hydrolysis of Solid Samples Suspended in Aqueous Media
558(2)
Solution Hydrolysis
560(1)
Hydrolysis of Samples Exposed to Humidity
561(2)
Enzymatic Degradation
563(1)
Applications and Performance
563(5)
Summary
568(11)
Acknowledgments
569(1)
Reference
569(10)
Polylactide-Based Biocomposites
579(18)
David Plackett
Anders Sodergard
Introduction
580(2)
Background
580(1)
Lactic Acid-Based Polymers: Polylactides
581(1)
Research on PLA Biocomposites
582(10)
Introduction
582(1)
Natural Fiber Composites
583(1)
Natural Fiber Biocomposites
583(1)
PLA Biocomposites
584(1)
Previous and Current Research Activities in PLA--Natural Fiber Composites
584(2)
Processing and Processability of PLA--Natural Fiber Composites
586(1)
Mechanical Properties of PLA--Natural Fiber Composites
587(3)
Environmental Stability of PLA--Natural Fiber Composites
590(1)
Other Characteristics of PLA--Natural Fiber Composites
591(1)
Thermal Properties
591(1)
Flammability
591(1)
Recycling by Reprocessing
591(1)
Applications
592(1)
Future Directions
593(4)
References
594(3)
Bacterial Polyester-Based Biocomposites: A Review
597(20)
Alma Hodzic
Introduction
598(4)
Bacterial Polyesters
598(3)
Natural Fibers
601(1)
Chemical Modification of Natural Fibers
602(2)
Effect of Processing Temperature
604(2)
Effect of Silane Coupling Agent
606(2)
Effect of Hydrogen Bonding Additives
608(2)
Effect of Plasticizers
610(2)
Physics of Transcrystalline Region
612(1)
Conclusion and Future Directions
613(4)
References
614(3)
Cellulose Fiber-Reinforced Cellulose Esters: Biocomposites for the Future
617(22)
Guillermo Toriz
Paul Gatenholm
Brian D. Seiler
Debra Tindall
Introduction
618(4)
Case Study: Automotive Interior Applications
622(3)
Materials
623(1)
Methods: Matrix Fiber Adhesion Studies
623(1)
Composite Preparation
624(1)
Low-Density Composites
624(1)
High-Density Composites
624(1)
Viscosity and Dynamic Mechanical Thermal Analysis
624(1)
Mechanical Tests
624(1)
Scanning Electron Microscopy
624(1)
Results and Discussion
625(7)
Interfacial Adhesion
625(1)
Rheological Properties
626(3)
Dynamic Mechanical Thermal Analysis
629(1)
Mechanical Properties
629(2)
Injection-Molded and Low-Density Prototypes
631(1)
Conclusions
632(1)
Appendix
633(6)
Cellulose Esters
633(1)
Cellulose Esters Manufacture and Characteristics
633(4)
References
637(2)
Starch Polymers: Chemistry, Engineering, and Novel Products
639(32)
Bor-Sen Chiou
Gregory M. Glenn
Syed H. Imam
Maria K. Inglesby
Delilah F. Wood
William J. Orts
Introduction
640(3)
Starch Blends and Biodegradability
643(7)
Baked Starch-Based Foams
650(2)
Starch-Based Foams: Moisture Protection
652(2)
Compression/Explosion Process
654(1)
Microcellular Foams: Preparation and Characterization
655(1)
Microcellular Foams: Encapsulation of Volatile Compounds
656(3)
Frozen-Food Trays
659(1)
Lightweight Concrete from Aquagels
659(4)
Starch-Based Wood Adhesive
663(1)
Starch Modifications for Tailored Properties
663(2)
Summary
665(6)
References
666(5)
Lignin-Based Polymer Blends and Biocomposite Materials
671(28)
Satoshi Kubo
Richard D. Gilbert
John F. Kadla
Introduction
672(5)
Thermal and Chemical Properties of Lignin
677(5)
Thermal Treatment of Lignin
682(1)
Change in Chemical Structure of Lignin during Thermal Spinning
682(3)
Lignin-Synthetic Polymer Blends
685(7)
Lignin--Polyolefin Blend Fibers
686(2)
Lignin--Polyester Blend Fibers
688(1)
Lignin--Hydrophilic Polymer Blend Fiber
689(1)
Lignin--Amphiphilic Polymer Blend Fibers
690(2)
Application of Lignin--Synthetic Polymer Blend Fibers as Precursors for Carbon Fibers
692(2)
Processability
692(1)
Carbon Fiber
693(1)
Conclusion
694(5)
References
695(4)
Soy Protein-Based Plastics, Blends, and Composites
699(28)
Amar K. Mohanty
Wanjun Liu
Praveen Tummala
Lawrence T. Drzal
Manjusri Misra
Ramani Narayan
Introduction
700(1)
Classification of Soy Protein
701(1)
Protein Structure
702(1)
Composition of Soy Proteins
703(1)
Proteins Denaturation
704(1)
Plasticization Thermodynamics
705(2)
Soy Protein Plastics
707(1)
Soy Protein Plastics Blends
708(5)
Natural Fiber-Reinforced Soy-Based Biocomposites
713(7)
Future Research Directions of Soy Protein Materials
720(7)
Acknowledgments
721(1)
References
721(6)
Synthesis, Properties, and Potential Applications of Novel Thermosetting Biopolymers from Soybean and Other Natural Oils
727(24)
Fengkui Li
Richard C. Larock
Introduction
728(1)
Biopolymers from the Cationic Polymerization of Soybean Oil
729(9)
Soybean Oils as Cationic Monomers
729(1)
Polymer Synthesis and Structural Characteristics
730(2)
Thermophysical and Mechanical Properties
732(1)
Good Damping Properties
733(4)
Shape Memory Properties
737(1)
Biopolymers from the Cationic Polymerization of Other Natural Oils
738(4)
Vegetable Oil-Based Polymers
738(1)
Tung Oil-Based Polymers
739(1)
Fish Oil-Based Polymers
740(2)
Biopolymers from the Thermal Polymerization of Natural Oils
742(2)
Biopolymers from the Free Radical Polymerization of Natural Oils
744(1)
Biopolymers from the Free Radical Polymerization of Natural Oil Derivatives
744(2)
Potential Applications
746(1)
Conclusions
746(5)
Acknowledgments
747(1)
References
747(4)
Houses Using Soy Oil and Natural Fibers Biocomposites
751(24)
Mahmoud A. Dweib
Annmarie O'Donnell
Richard P. Wool
Bo Hu
Harry W. Shenton III
Introduction and Background
752(1)
Materials
753(2)
Soy Oil-Based Resin
753(2)
Natural Fiber Mats
755(1)
Foams
755(1)
Composite Processing and Manufacturing: Natural Composite Panels
756(6)
Manufacturing Using VARTM
756(2)
Permeability Measurements
758(1)
Dynamic Mechanical Analysis (DMA)
759(2)
Effect of Fiber Content
761(1)
Applications: Housing Construction Material
762(6)
Introduction
762(2)
Beam Design
764(1)
Structural Composite Manufacturing Using VARTM
765(2)
Four-Point Bending Test and Results
767(1)
Other Potential Applications
768(3)
Stay-in-Place Bridge Decking Form
769(1)
Furniture Application
770(1)
Conclusions
771(4)
References
771(4)
Biobased Polyurethanes and Their Composites: Present Status and Future Perspective
775(32)
Jean-Pierre Latere Dwan'Isa
Amar K. Mohanty
Manjusri Misra
Lawrence T. Drzal
Introduction
776(1)
Polyols from Petroleum
776(2)
Polyether Polyols
777(1)
Polyester Polyols
777(1)
Polycarbonate Polyols
778(1)
Isocyanates
778(1)
Biobased Polyurethanes
778(14)
Polyols from Plant Oils
780(1)
Castor Oil and Lesquerella Oil
781(1)
Chemical Modification of Vegetable Oils
782(3)
Polyols from Wood
785(1)
Polyols from Carbohydrates
786(2)
Polyols from Lignin
788(3)
Polyols from Cashew
791(1)
Polyols from Cork
792(1)
Biobased Polyurethane Composites
792(7)
Biobased Polyurethane Composites from Merginate Polyols
793(1)
Biobased Polyurethane Composites from Soybean Phosphate Ester Polyol
793(1)
Experimental Section
793(1)
Results and Discussion
794(5)
Future Perspectives
799(1)
Conclusions
800(7)
Acknowledgments
801(1)
References
801(6)
Cellulose-Based Nanocomposites
807(26)
Lars Berglund
Introduction
808(1)
Cellulose Structure and Properties
809(2)
Tunicin-Based Nanocomposites
811(6)
Microfibrillated Cellulose (MFC) Nanocomposites
817(8)
MFC from Wood Pulp
817(3)
MFC from Parenchyma Cell Wall Pulp
820(3)
MFC from Algae
823(1)
Disintegration of MFC
824(1)
Bacterial Cellulose Nanocomposites
825(1)
Nanoscale Modified Plant Fiber Structures
826(2)
Concluding Remarks
828(5)
Acknowledgments
830(1)
References
830(3)
How Sustainable Are Biopolymers and Biobased Products? The Hope, the Doubts, and the Reality
833(22)
Martin Patel
Ramani Narayan
Introduction
834(1)
PHA vs. Petrochemical Polymers: Energy and GHG Argument
835(3)
There Is More than PHA: More Results for Further Biobased Polymers
838(8)
Environmental Argument
846(3)
Discussion and Conclusions
849(6)
References
851(4)
Index 855

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.