|
Natural Fibers, Biopolymers, and Biocomposites: An Introduction |
|
|
1 | (36) |
|
|
|
|
|
|
|
|
2 | (2) |
|
Motivation: Biobased Materials vs. Environmental Impact |
|
|
4 | (1) |
|
|
4 | (2) |
|
Natural/Biofibers as Reinforcements in Biocomposites |
|
|
6 | (4) |
|
Biodegradable/Biobased Polymers as Matrices for Biocomposite Applications |
|
|
10 | (11) |
|
Biodegradable Polymers from Starch and Cellulose |
|
|
12 | (1) |
|
Biobased/Biodegradable Plastics from Soybeans and Other Plant Resources |
|
|
13 | (1) |
|
Biodegradable Polyesters from Renewable Resources and Petroleum Resources |
|
|
14 | (5) |
|
Biobased Polymeric Materials from Mixed Resources (Renewable and Petroleum Resources) |
|
|
19 | (2) |
|
Biocomposites as Alternatives to Petroleum-Based Composites: Recent Trends and Opportunities for the Future |
|
|
21 | (6) |
|
Sustainable Biobased Products: New Materials for a New Economy |
|
|
27 | (2) |
|
|
29 | (8) |
|
|
30 | (1) |
|
|
31 | (6) |
|
Plant Fibers as Reinforcement for Green Composites |
|
|
37 | (72) |
|
|
|
|
|
39 | (6) |
|
Plant Fiber Composition and Structure |
|
|
45 | (5) |
|
|
50 | (2) |
|
Agricultural Fiber Crop Cultivation |
|
|
52 | (7) |
|
Harvesting Bast Fiber Crops |
|
|
53 | (1) |
|
Fiber Extraction, Separation and Processing |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
Mechanical or Green Retting |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
Chemical and Surfactant Retting |
|
|
58 | (1) |
|
Impact on Fiber Properties: Different Fiber Separation/Retting Procedures |
|
|
59 | (6) |
|
Fiber Treatment and Modification |
|
|
65 | (1) |
|
|
66 | (14) |
|
Flax (Linum usitatissimum L., Linaceae) Fibers |
|
|
69 | (3) |
|
Hemp (Cannabis sativa L., Cannabaceae) Fibers |
|
|
72 | (2) |
|
Jute (Corchorus capsularis, Tiliaceae) Fibers |
|
|
74 | (3) |
|
Kenaf (Hibiscus cannabinus L., Malvaceae) Fibers |
|
|
77 | (1) |
|
Ramie (Boehmeria nivea L. and Boehmeria viridis, Urticaceae) Fibers |
|
|
77 | (2) |
|
(Stinging) Nettle (Urtica dioica L., Urticaceae) Fibers |
|
|
79 | (1) |
|
|
80 | (10) |
|
Sisal (Agave sisalana, Liliaceae) Fibers |
|
|
80 | (3) |
|
Henequen (Agave fourcroydes, Liliaceae) Fibers |
|
|
83 | (2) |
|
Pineapple (Anannus comosus, Bromeliaceae) Leaf Fibers (PALF) |
|
|
85 | (2) |
|
Abaca (Musa textilis Nee, Musaceae) Fibers |
|
|
87 | (1) |
|
Oil Palm (Elaeis guineensis, Palmacea) Fibers |
|
|
87 | (3) |
|
|
90 | (1) |
|
Cotton (Gossypium spp., Malvaceae) |
|
|
90 | (1) |
|
|
90 | (3) |
|
Coconut Husk or Coir (Cocos nucifera, Palmae) Fibers |
|
|
90 | (3) |
|
Stalk Fibers: (Cereal) Straw Fibers |
|
|
93 | (1) |
|
|
94 | (2) |
|
|
96 | (13) |
|
|
97 | (1) |
|
|
97 | (12) |
|
Processing of Bast Fiber Plants for Industrial Application |
|
|
109 | (32) |
|
|
|
|
|
111 | (1) |
|
Present Growing of Bast Fiber Plants Worldwide---Volume and Yield |
|
|
112 | (1) |
|
Composition of Bast Fiber Plants |
|
|
112 | (1) |
|
Demands on Bast Fibers for Various Industrial Applications |
|
|
113 | (1) |
|
|
114 | (2) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
Processing of Natural Fiber Plants |
|
|
116 | (15) |
|
Process Overview and Description |
|
|
116 | (3) |
|
Opening of the Bales and Shortening of the Stalks |
|
|
119 | (2) |
|
Elimination of Metallic Impurities and Stones |
|
|
121 | (1) |
|
|
121 | (2) |
|
|
123 | (1) |
|
Definition and Principles of Decortication |
|
|
123 | (1) |
|
|
123 | (2) |
|
Hammer Mills without Integrated Cleaning Effect |
|
|
125 | (1) |
|
Hammer Mills with Integrated Cleaning Effect |
|
|
125 | (1) |
|
|
126 | (1) |
|
Working Principles and Tools |
|
|
126 | (1) |
|
Scutching Turbine/Tambour |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
Cutting of Fibers into a Defined Length |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (1) |
|
Components Arising from Processing and Fiber Yields |
|
|
131 | (1) |
|
Mechanical Properties of Processed Fibers |
|
|
132 | (5) |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
Comparative Valuation of Technologies and Fiber Data |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (3) |
|
|
139 | (2) |
|
Recent Developments in Retting and Measurement of Fiber Quality in Natural Fibers: Pro and Cons |
|
|
141 | (18) |
|
|
|
|
142 | (7) |
|
Dew Retting with Glyphosate |
|
|
143 | (1) |
|
|
143 | (5) |
|
Chemical/Mechanical Retting |
|
|
148 | (1) |
|
Standards for Flax Fibers |
|
|
149 | (4) |
|
|
152 | (1) |
|
|
152 | (1) |
|
Trash (Nonfiber) Components |
|
|
153 | (1) |
|
|
153 | (6) |
|
|
155 | (4) |
|
Alternative Low-Cost Biomass for the Biocomposites Industry |
|
|
159 | (18) |
|
|
|
160 | (1) |
|
|
161 | (2) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (9) |
|
|
164 | (1) |
|
|
164 | (1) |
|
Construction and Demolition Waste |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
166 | (2) |
|
Agricultural Production Residues |
|
|
168 | (3) |
|
Agricultural Processing Residues |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (4) |
|
|
173 | (1) |
|
|
173 | (4) |
|
Fiber-Matrix Adhesion in Natural Fiber Composites |
|
|
177 | (54) |
|
|
|
|
180 | (2) |
|
Properties of Natural Fibers |
|
|
182 | (3) |
|
Isolation of Natural Fibers |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
Hydrophilicity of Cellulose |
|
|
185 | (1) |
|
The Fiber-Matrix Interphase |
|
|
185 | (1) |
|
Fiber Surface Modification Methods |
|
|
186 | (4) |
|
Physical Methods of Modification |
|
|
186 | (1) |
|
Alkali Swelling and Substitution Reactions |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (5) |
|
Testing of Adhesion in Fiber-Matrix Composites: Micromechanical Characterization |
|
|
191 | (4) |
|
Experimental Procedure and Materials |
|
|
195 | (4) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
X-ray Photoelectron Spectroscopy (XPS) |
|
|
197 | (1) |
|
Infrared Spectroscopy (FTIR) |
|
|
197 | (1) |
|
Pullout Test Sample Preparation |
|
|
198 | (1) |
|
The Single-Fiber Fragmentation Test Sample Preparation |
|
|
198 | (1) |
|
Elaboration of the Composite |
|
|
198 | (1) |
|
Scanning Electron Microscopy (SEM) |
|
|
199 | (1) |
|
|
199 | (9) |
|
|
199 | (4) |
|
|
203 | (3) |
|
X-ray Photoelectron Spectroscopy (XPS) |
|
|
206 | (2) |
|
Infrared Spectroscopy (FTIR) |
|
|
208 | (5) |
|
Fiber-Matrix Adhesion: Characterization of the Adhesion Level Using Micromechanical Techniques |
|
|
213 | (4) |
|
Single-Fiber Fragmentation Test |
|
|
217 | (1) |
|
Effect of Fiber-Matrix Adhesion on Mechanical Properties |
|
|
218 | (6) |
|
|
218 | (3) |
|
|
221 | (3) |
|
|
224 | (7) |
|
|
225 | (6) |
|
Natural Fiber Composites in Automotive Applications |
|
|
231 | (30) |
|
|
|
Introduction: History of Natural Fiber Applications within the Motor Industry |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (3) |
|
|
239 | (1) |
|
Fiber Collection and Storage |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (2) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
The Use of Thermoplastics and Thermosets |
|
|
243 | (1) |
|
Structure of the Automotive Components Market |
|
|
244 | (1) |
|
Mechanical Characterization |
|
|
244 | (1) |
|
Current Automotive Applications |
|
|
244 | (2) |
|
|
246 | (4) |
|
|
250 | (1) |
|
|
251 | (2) |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
256 | (5) |
|
|
256 | (5) |
|
Natural Fiber Composites for Building Applications |
|
|
261 | (30) |
|
|
|
|
262 | (1) |
|
Natural Fiber Composites in Buildings---An Experience |
|
|
262 | (2) |
|
|
264 | (1) |
|
Surface Modification of Natural Fibers |
|
|
264 | (7) |
|
Fiber-Coupling Agent Interaction |
|
|
266 | (1) |
|
Modified Fiber-Resin Interaction |
|
|
267 | (1) |
|
Chemically Treated Fibers in Polymer Composites |
|
|
267 | (4) |
|
Properties of Natural Fiber Composites |
|
|
271 | (2) |
|
|
273 | (1) |
|
Natural Fiber-Based Building Materials |
|
|
274 | (13) |
|
|
275 | (2) |
|
|
277 | (1) |
|
Jute Pultruded Door Frames |
|
|
278 | (2) |
|
|
280 | (2) |
|
Composite Shuttering Plates |
|
|
282 | (2) |
|
|
284 | (3) |
|
|
287 | (4) |
|
|
287 | (1) |
|
|
287 | (4) |
|
|
291 | (56) |
|
|
|
|
292 | (2) |
|
|
294 | (8) |
|
|
294 | (4) |
|
|
298 | (4) |
|
Thermoset: Natural Fiber Bonding and the Effect of Moisture |
|
|
302 | (4) |
|
Surface Modification of Natural Fibers |
|
|
306 | (1) |
|
|
307 | (33) |
|
|
307 | (1) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
308 | (1) |
|
Jute-Thermoset Composites |
|
|
309 | (6) |
|
Coir-Thermoset Composites |
|
|
315 | (3) |
|
Sisal--Thermoset Composites |
|
|
318 | (2) |
|
Pineapple Leaf Fiber-Thermoset Composites |
|
|
320 | (1) |
|
Sunhemp--Thermoset Composites |
|
|
321 | (1) |
|
Straw--Thermoset Composites |
|
|
322 | (1) |
|
Banana Fiber--Thermoset Composites |
|
|
322 | (1) |
|
Other Lignocellulosic Fiber--Thermoset Composites |
|
|
323 | (1) |
|
Dynamic Mechanical Properties |
|
|
324 | (2) |
|
|
326 | (3) |
|
|
329 | (2) |
|
|
331 | (1) |
|
|
332 | (8) |
|
|
340 | (1) |
|
|
340 | (7) |
|
|
341 | (1) |
|
|
341 | (6) |
|
Thermoplastic Wood Fiber Composites |
|
|
347 | (44) |
|
|
|
348 | (3) |
|
|
351 | (10) |
|
|
351 | (1) |
|
Structure, Composition, and Properties |
|
|
351 | (2) |
|
|
353 | (2) |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
359 | (1) |
|
Characteristics Imparted by Coupling Agents |
|
|
359 | (1) |
|
Methods to Manufacture Composite |
|
|
359 | (1) |
|
Modification of the Wood Fiber |
|
|
360 | (1) |
|
|
360 | (1) |
|
Coupling, in situ Reactions |
|
|
361 | (1) |
|
|
361 | (18) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
362 | (6) |
|
|
368 | (1) |
|
|
368 | (2) |
|
|
370 | (2) |
|
|
372 | (1) |
|
|
373 | (1) |
|
|
374 | (2) |
|
|
376 | (3) |
|
|
379 | (1) |
|
|
380 | (4) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
|
|
385 | (6) |
|
|
386 | (5) |
|
Bamboo-Based Ecocomposites and Their Potential Applications |
|
|
391 | (16) |
|
|
|
|
|
|
392 | (4) |
|
|
394 | (1) |
|
|
394 | (2) |
|
|
396 | (8) |
|
Bamboo Content and Surface Treatment |
|
|
396 | (2) |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
399 | (4) |
|
|
403 | (1) |
|
|
404 | (3) |
|
|
405 | (2) |
|
Oil Palm Fiber-Thermoplastic Composites |
|
|
407 | (28) |
|
|
|
|
|
408 | (3) |
|
|
411 | (20) |
|
Morphological Properties of Oil Palm Fiber in Comparison with Hardwood and Softwood |
|
|
411 | (1) |
|
Availability of Oil Palm Biomass |
|
|
411 | (1) |
|
Research and Development on Oil Palm Fibers--Thermoplastic Composites |
|
|
412 | (1) |
|
Mechanical Properties of High-Density Polyethylene (HDPE) Composites Filled with OPF and EFB |
|
|
412 | (4) |
|
Mechanical Properties of Various Thermoplastic Composites Filled with EFB |
|
|
416 | (1) |
|
The Effect of Compounding Techniques |
|
|
416 | (4) |
|
The Effect of Surface Chemical Treatments |
|
|
420 | (6) |
|
The Effect of Oil Extraction |
|
|
426 | (5) |
|
|
431 | (4) |
|
|
432 | (3) |
|
Natural Fiber--Rubber Composites and Their Applications |
|
|
435 | (38) |
|
|
|
|
Introduction: Advantages and Disadvantages of Using Natural Fibers in Composites |
|
|
436 | (1) |
|
|
437 | (5) |
|
|
438 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
442 | (8) |
|
|
442 | (2) |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
447 | (1) |
|
Ethylene Propylene Diene Rubber |
|
|
448 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
Short Fiber-Reinforced Rubber Composites |
|
|
450 | (20) |
|
|
451 | (2) |
|
Factors Affecting Reinforcement |
|
|
453 | (1) |
|
|
454 | (4) |
|
|
458 | (4) |
|
|
462 | (2) |
|
Rheological and Aging Studies |
|
|
464 | (5) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
470 | (3) |
|
|
471 | (2) |
|
Straw-Based Biomass and Biocomposites |
|
|
473 | (24) |
|
|
|
|
|
474 | (1) |
|
Structure and Chemical Composition of Straw |
|
|
475 | (3) |
|
|
475 | (1) |
|
Physical and Chemical Properties |
|
|
476 | (2) |
|
Straw-Based Particleboards and Fiberboards |
|
|
478 | (11) |
|
|
478 | (1) |
|
|
478 | (1) |
|
Methylene Diphenyl Diisocyanate and Polymeric Methylene Diphenyl Diisocyanate Resins |
|
|
478 | (2) |
|
|
480 | (2) |
|
|
482 | (1) |
|
|
483 | (1) |
|
Pretreatment of Straw for Straw-Based Composites |
|
|
483 | (1) |
|
|
483 | (1) |
|
Chemical and Enzyme Treatments |
|
|
484 | (3) |
|
Straw--Plastic Composites |
|
|
487 | (2) |
|
Current Status and Industrial Applications |
|
|
489 | (2) |
|
|
491 | (6) |
|
|
491 | (6) |
|
Sorona® Polymer: Present Status and Future Perspectives |
|
|
497 | (30) |
|
|
Development of Sustainable Technologies |
|
|
499 | (2) |
|
|
499 | (1) |
|
|
500 | (1) |
|
History and Development of Sorona |
|
|
501 | (5) |
|
|
501 | (1) |
|
|
502 | (1) |
|
Molecular Structure and Effects on Mechanical Properties |
|
|
502 | (1) |
|
How Do Molecular Shape and Crystalline Structure Translate into Beneficial Properties? |
|
|
503 | (3) |
|
|
506 | (1) |
|
|
506 | (6) |
|
|
506 | (1) |
|
PDO from Traditional (Chemical) Sources |
|
|
507 | (1) |
|
|
508 | (2) |
|
|
510 | (1) |
|
|
510 | (1) |
|
Dimethyl Terephthalate (DMT) |
|
|
511 | (1) |
|
|
512 | (1) |
|
|
512 | (1) |
|
Chemistry and Technology of Polymerization |
|
|
512 | (5) |
|
|
512 | (1) |
|
Terephthalic Acid Process |
|
|
512 | (1) |
|
|
512 | (1) |
|
|
513 | (1) |
|
Dimethyl Terephthalate Process |
|
|
514 | (1) |
|
|
514 | (1) |
|
|
514 | (1) |
|
|
515 | (1) |
|
|
516 | (1) |
|
|
517 | (1) |
|
|
517 | (3) |
|
Fibers: Apparel and Carpets |
|
|
517 | (2) |
|
|
519 | (1) |
|
|
519 | (1) |
|
|
520 | (1) |
|
|
520 | (1) |
|
Applications and End Uses |
|
|
520 | (3) |
|
|
520 | (1) |
|
|
520 | (2) |
|
|
522 | (1) |
|
|
522 | (1) |
|
|
522 | (1) |
|
|
522 | (1) |
|
|
523 | (1) |
|
|
523 | (1) |
|
|
523 | (1) |
|
|
523 | (1) |
|
|
523 | (4) |
|
|
524 | (1) |
|
|
524 | (1) |
|
Endnotes: Patent References |
|
|
525 | (2) |
|
Polylactic Acid Technology |
|
|
527 | (52) |
|
|
|
|
|
|
528 | (3) |
|
|
531 | (1) |
|
|
532 | (4) |
|
Polymerization of Lactide |
|
|
536 | (2) |
|
|
538 | (25) |
|
Linear Optical Copolymer Structures and Blends |
|
|
538 | (2) |
|
|
540 | (1) |
|
Glass Transition and the Amorphous Phase |
|
|
540 | (2) |
|
|
542 | (1) |
|
Melt Rheology of Linear PLA |
|
|
542 | (2) |
|
|
544 | (1) |
|
|
544 | (1) |
|
|
545 | (2) |
|
Solid-State Viscoelastic Properties |
|
|
547 | (1) |
|
|
547 | (1) |
|
|
547 | (3) |
|
|
550 | (2) |
|
|
552 | (1) |
|
|
553 | (1) |
|
Stress-Induced Crystallization |
|
|
554 | (1) |
|
Degradation and Hydrolysis |
|
|
555 | (1) |
|
|
555 | (3) |
|
Hydrolysis of Solid Samples Suspended in Aqueous Media |
|
|
558 | (2) |
|
|
560 | (1) |
|
Hydrolysis of Samples Exposed to Humidity |
|
|
561 | (2) |
|
|
563 | (1) |
|
Applications and Performance |
|
|
563 | (5) |
|
|
568 | (11) |
|
|
569 | (1) |
|
|
569 | (10) |
|
Polylactide-Based Biocomposites |
|
|
579 | (18) |
|
|
|
|
580 | (2) |
|
|
580 | (1) |
|
Lactic Acid-Based Polymers: Polylactides |
|
|
581 | (1) |
|
Research on PLA Biocomposites |
|
|
582 | (10) |
|
|
582 | (1) |
|
|
583 | (1) |
|
Natural Fiber Biocomposites |
|
|
583 | (1) |
|
|
584 | (1) |
|
Previous and Current Research Activities in PLA--Natural Fiber Composites |
|
|
584 | (2) |
|
Processing and Processability of PLA--Natural Fiber Composites |
|
|
586 | (1) |
|
Mechanical Properties of PLA--Natural Fiber Composites |
|
|
587 | (3) |
|
Environmental Stability of PLA--Natural Fiber Composites |
|
|
590 | (1) |
|
Other Characteristics of PLA--Natural Fiber Composites |
|
|
591 | (1) |
|
|
591 | (1) |
|
|
591 | (1) |
|
Recycling by Reprocessing |
|
|
591 | (1) |
|
|
592 | (1) |
|
|
593 | (4) |
|
|
594 | (3) |
|
Bacterial Polyester-Based Biocomposites: A Review |
|
|
597 | (20) |
|
|
|
598 | (4) |
|
|
598 | (3) |
|
|
601 | (1) |
|
Chemical Modification of Natural Fibers |
|
|
602 | (2) |
|
Effect of Processing Temperature |
|
|
604 | (2) |
|
Effect of Silane Coupling Agent |
|
|
606 | (2) |
|
Effect of Hydrogen Bonding Additives |
|
|
608 | (2) |
|
|
610 | (2) |
|
Physics of Transcrystalline Region |
|
|
612 | (1) |
|
Conclusion and Future Directions |
|
|
613 | (4) |
|
|
614 | (3) |
|
Cellulose Fiber-Reinforced Cellulose Esters: Biocomposites for the Future |
|
|
617 | (22) |
|
|
|
|
|
|
618 | (4) |
|
Case Study: Automotive Interior Applications |
|
|
622 | (3) |
|
|
623 | (1) |
|
Methods: Matrix Fiber Adhesion Studies |
|
|
623 | (1) |
|
|
624 | (1) |
|
|
624 | (1) |
|
|
624 | (1) |
|
Viscosity and Dynamic Mechanical Thermal Analysis |
|
|
624 | (1) |
|
|
624 | (1) |
|
Scanning Electron Microscopy |
|
|
624 | (1) |
|
|
625 | (7) |
|
|
625 | (1) |
|
|
626 | (3) |
|
Dynamic Mechanical Thermal Analysis |
|
|
629 | (1) |
|
|
629 | (2) |
|
Injection-Molded and Low-Density Prototypes |
|
|
631 | (1) |
|
|
632 | (1) |
|
|
633 | (6) |
|
|
633 | (1) |
|
Cellulose Esters Manufacture and Characteristics |
|
|
633 | (4) |
|
|
637 | (2) |
|
Starch Polymers: Chemistry, Engineering, and Novel Products |
|
|
639 | (32) |
|
|
|
|
|
|
|
|
640 | (3) |
|
Starch Blends and Biodegradability |
|
|
643 | (7) |
|
|
650 | (2) |
|
Starch-Based Foams: Moisture Protection |
|
|
652 | (2) |
|
Compression/Explosion Process |
|
|
654 | (1) |
|
Microcellular Foams: Preparation and Characterization |
|
|
655 | (1) |
|
Microcellular Foams: Encapsulation of Volatile Compounds |
|
|
656 | (3) |
|
|
659 | (1) |
|
Lightweight Concrete from Aquagels |
|
|
659 | (4) |
|
Starch-Based Wood Adhesive |
|
|
663 | (1) |
|
Starch Modifications for Tailored Properties |
|
|
663 | (2) |
|
|
665 | (6) |
|
|
666 | (5) |
|
Lignin-Based Polymer Blends and Biocomposite Materials |
|
|
671 | (28) |
|
|
|
|
|
672 | (5) |
|
Thermal and Chemical Properties of Lignin |
|
|
677 | (5) |
|
Thermal Treatment of Lignin |
|
|
682 | (1) |
|
Change in Chemical Structure of Lignin during Thermal Spinning |
|
|
682 | (3) |
|
Lignin-Synthetic Polymer Blends |
|
|
685 | (7) |
|
Lignin--Polyolefin Blend Fibers |
|
|
686 | (2) |
|
Lignin--Polyester Blend Fibers |
|
|
688 | (1) |
|
Lignin--Hydrophilic Polymer Blend Fiber |
|
|
689 | (1) |
|
Lignin--Amphiphilic Polymer Blend Fibers |
|
|
690 | (2) |
|
Application of Lignin--Synthetic Polymer Blend Fibers as Precursors for Carbon Fibers |
|
|
692 | (2) |
|
|
692 | (1) |
|
|
693 | (1) |
|
|
694 | (5) |
|
|
695 | (4) |
|
Soy Protein-Based Plastics, Blends, and Composites |
|
|
699 | (28) |
|
|
|
|
|
|
|
|
700 | (1) |
|
Classification of Soy Protein |
|
|
701 | (1) |
|
|
702 | (1) |
|
Composition of Soy Proteins |
|
|
703 | (1) |
|
|
704 | (1) |
|
Plasticization Thermodynamics |
|
|
705 | (2) |
|
|
707 | (1) |
|
Soy Protein Plastics Blends |
|
|
708 | (5) |
|
Natural Fiber-Reinforced Soy-Based Biocomposites |
|
|
713 | (7) |
|
Future Research Directions of Soy Protein Materials |
|
|
720 | (7) |
|
|
721 | (1) |
|
|
721 | (6) |
|
Synthesis, Properties, and Potential Applications of Novel Thermosetting Biopolymers from Soybean and Other Natural Oils |
|
|
727 | (24) |
|
|
|
|
728 | (1) |
|
Biopolymers from the Cationic Polymerization of Soybean Oil |
|
|
729 | (9) |
|
Soybean Oils as Cationic Monomers |
|
|
729 | (1) |
|
Polymer Synthesis and Structural Characteristics |
|
|
730 | (2) |
|
Thermophysical and Mechanical Properties |
|
|
732 | (1) |
|
|
733 | (4) |
|
|
737 | (1) |
|
Biopolymers from the Cationic Polymerization of Other Natural Oils |
|
|
738 | (4) |
|
Vegetable Oil-Based Polymers |
|
|
738 | (1) |
|
|
739 | (1) |
|
|
740 | (2) |
|
Biopolymers from the Thermal Polymerization of Natural Oils |
|
|
742 | (2) |
|
Biopolymers from the Free Radical Polymerization of Natural Oils |
|
|
744 | (1) |
|
Biopolymers from the Free Radical Polymerization of Natural Oil Derivatives |
|
|
744 | (2) |
|
|
746 | (1) |
|
|
746 | (5) |
|
|
747 | (1) |
|
|
747 | (4) |
|
Houses Using Soy Oil and Natural Fibers Biocomposites |
|
|
751 | (24) |
|
|
|
|
|
|
Introduction and Background |
|
|
752 | (1) |
|
|
753 | (2) |
|
|
753 | (2) |
|
|
755 | (1) |
|
|
755 | (1) |
|
Composite Processing and Manufacturing: Natural Composite Panels |
|
|
756 | (6) |
|
Manufacturing Using VARTM |
|
|
756 | (2) |
|
Permeability Measurements |
|
|
758 | (1) |
|
Dynamic Mechanical Analysis (DMA) |
|
|
759 | (2) |
|
|
761 | (1) |
|
Applications: Housing Construction Material |
|
|
762 | (6) |
|
|
762 | (2) |
|
|
764 | (1) |
|
Structural Composite Manufacturing Using VARTM |
|
|
765 | (2) |
|
Four-Point Bending Test and Results |
|
|
767 | (1) |
|
Other Potential Applications |
|
|
768 | (3) |
|
Stay-in-Place Bridge Decking Form |
|
|
769 | (1) |
|
|
770 | (1) |
|
|
771 | (4) |
|
|
771 | (4) |
|
Biobased Polyurethanes and Their Composites: Present Status and Future Perspective |
|
|
775 | (32) |
|
Jean-Pierre Latere Dwan'Isa |
|
|
|
|
|
|
776 | (1) |
|
|
776 | (2) |
|
|
777 | (1) |
|
|
777 | (1) |
|
|
778 | (1) |
|
|
778 | (1) |
|
|
778 | (14) |
|
|
780 | (1) |
|
Castor Oil and Lesquerella Oil |
|
|
781 | (1) |
|
Chemical Modification of Vegetable Oils |
|
|
782 | (3) |
|
|
785 | (1) |
|
Polyols from Carbohydrates |
|
|
786 | (2) |
|
|
788 | (3) |
|
|
791 | (1) |
|
|
792 | (1) |
|
Biobased Polyurethane Composites |
|
|
792 | (7) |
|
Biobased Polyurethane Composites from Merginate Polyols |
|
|
793 | (1) |
|
Biobased Polyurethane Composites from Soybean Phosphate Ester Polyol |
|
|
793 | (1) |
|
|
793 | (1) |
|
|
794 | (5) |
|
|
799 | (1) |
|
|
800 | (7) |
|
|
801 | (1) |
|
|
801 | (6) |
|
Cellulose-Based Nanocomposites |
|
|
807 | (26) |
|
|
|
808 | (1) |
|
Cellulose Structure and Properties |
|
|
809 | (2) |
|
Tunicin-Based Nanocomposites |
|
|
811 | (6) |
|
Microfibrillated Cellulose (MFC) Nanocomposites |
|
|
817 | (8) |
|
|
817 | (3) |
|
MFC from Parenchyma Cell Wall Pulp |
|
|
820 | (3) |
|
|
823 | (1) |
|
|
824 | (1) |
|
Bacterial Cellulose Nanocomposites |
|
|
825 | (1) |
|
Nanoscale Modified Plant Fiber Structures |
|
|
826 | (2) |
|
|
828 | (5) |
|
|
830 | (1) |
|
|
830 | (3) |
|
How Sustainable Are Biopolymers and Biobased Products? The Hope, the Doubts, and the Reality |
|
|
833 | (22) |
|
|
|
|
834 | (1) |
|
PHA vs. Petrochemical Polymers: Energy and GHG Argument |
|
|
835 | (3) |
|
There Is More than PHA: More Results for Further Biobased Polymers |
|
|
838 | (8) |
|
|
846 | (3) |
|
Discussion and Conclusions |
|
|
849 | (6) |
|
|
851 | (4) |
Index |
|
855 | |