Preface |
|
xix | |
|
Products and Markets: Equities, Commodities, Exchange Rates, Forwards and Futures |
|
|
1 | (26) |
|
|
2 | (1) |
|
|
2 | (7) |
|
|
5 | (4) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (2) |
|
|
14 | (4) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (4) |
|
A first example of no arbitrage |
|
|
21 | (3) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
25 | (2) |
|
|
27 | (32) |
|
|
28 | (1) |
|
|
28 | (5) |
|
Definition of common terms |
|
|
33 | (1) |
|
|
34 | (4) |
|
Other representations of value |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
The value of the option before expiry |
|
|
40 | (1) |
|
Factors affecting derivative prices |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (2) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (3) |
|
Predicting the Markets? A Small Digression |
|
|
59 | (16) |
|
|
60 | (1) |
|
|
60 | (7) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (3) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (4) |
|
Elliott waves and Fibonacci numbers |
|
|
69 | (2) |
|
|
71 | (1) |
|
|
71 | (1) |
|
Market microstructure modeling |
|
|
71 | (1) |
|
Effect of demand on price |
|
|
71 | (1) |
|
Combining market microstructure and option theory |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (2) |
|
All the Math You Need...and No More (An Executive Summary) |
|
|
75 | (10) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (2) |
|
Differentiation and Taylor series |
|
|
78 | (3) |
|
|
81 | (1) |
|
Mean, standard deviation and distributions |
|
|
81 | (1) |
|
|
82 | (3) |
|
|
85 | (16) |
|
|
86 | (1) |
|
Equities can go down as well as up |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
89 | (1) |
|
Standard deviation of asset price change |
|
|
89 | (1) |
|
|
89 | (1) |
|
The asset price distribution |
|
|
90 | (1) |
|
An equation for the value of an option |
|
|
90 | (3) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Where did the probability p go? |
|
|
93 | (1) |
|
Other choices for u, v and p |
|
|
93 | (1) |
|
Valuing back down the tree |
|
|
94 | (2) |
|
|
96 | (2) |
|
The continuous-time limit |
|
|
98 | (1) |
|
|
99 | (2) |
|
The Random Behavior of Assets |
|
|
101 | (18) |
|
|
102 | (1) |
|
Similarities between equities, currencies, commodities and indices |
|
|
102 | (1) |
|
|
103 | (5) |
|
|
108 | (4) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
The random walk on a spreadsheet |
|
|
112 | (2) |
|
|
114 | (1) |
|
The widely accepted model for equities, currencies, commodities and indices |
|
|
115 | (3) |
|
|
118 | (1) |
|
Elementary Stochastic Calculus |
|
|
119 | (20) |
|
|
120 | (1) |
|
|
120 | (2) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
Stochastic differential equations |
|
|
125 | (1) |
|
|
125 | (1) |
|
Functions of stochastic variables and Ito's lemma |
|
|
126 | (3) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (5) |
|
Brownian motion with drift |
|
|
131 | (1) |
|
The lognormal random walk |
|
|
132 | (1) |
|
A mean-reverting random walk |
|
|
133 | (2) |
|
And another mean-reverting random walk |
|
|
135 | (1) |
|
|
136 | (3) |
|
|
139 | (16) |
|
|
140 | (1) |
|
|
140 | (2) |
|
Elimination of risk: delta hedging |
|
|
142 | (1) |
|
|
142 | (1) |
|
The Black--Scholes equation |
|
|
143 | (2) |
|
The Black--Scholes assumptions |
|
|
145 | (1) |
|
|
146 | (1) |
|
Options on dividend-paying equities |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
Expectations and Black--Scholes |
|
|
148 | (1) |
|
Some other ways of deriving the Black--Scholes equation |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
No arbitrage in the binomial, Black--Scholes and `other' worlds |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
When interest rates are known, forward prices and futures prices are the same |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (2) |
|
Partial Differential Equations |
|
|
155 | (8) |
|
|
156 | (1) |
|
Putting the Black--Scholes equation into historical perspective |
|
|
156 | (1) |
|
The Meaning of the terms in the Black--Scholes equation |
|
|
157 | (1) |
|
Boundary and initial/final conditions |
|
|
157 | (1) |
|
|
158 | (2) |
|
Transformation to constant coefficient diffusion equation |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
Other analytical techniques |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
The Black--Scholes Formulas and the `Greeks' |
|
|
163 | (30) |
|
|
164 | (1) |
|
Derivation of the formulas for calls, puts and simple digitals |
|
|
164 | (12) |
|
|
169 | (4) |
|
|
173 | (2) |
|
Formula for a binary call |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (3) |
|
|
183 | (1) |
|
|
183 | (3) |
|
A classification of hedging types |
|
|
186 | (3) |
|
|
186 | (1) |
|
The two main classifications |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (4) |
|
|
193 | (14) |
|
|
194 | (1) |
|
Multidimensional lognormal random walks |
|
|
194 | (2) |
|
|
196 | (3) |
|
Options on many underlyings |
|
|
199 | (1) |
|
The pricing formula for European non-path-dependent options on dividend-paying assets |
|
|
200 | (1) |
|
Exchanging one asset for another: a similarity solution |
|
|
200 | (2) |
|
|
202 | (2) |
|
Realities of pricing basket options |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
Realities of hedging basket options |
|
|
205 | (1) |
|
Correlation versus cointegration |
|
|
205 | (1) |
|
|
206 | (1) |
|
An Introduction to Exotic and Path-Dependent Options |
|
|
207 | (20) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (2) |
|
|
218 | (3) |
|
|
221 | (1) |
|
|
221 | (1) |
|
|
222 | (5) |
|
|
227 | (24) |
|
|
228 | (1) |
|
Different types of barrier options |
|
|
228 | (1) |
|
Pricing barriers in the partial differential equation framework |
|
|
229 | (3) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (3) |
|
|
235 | (1) |
|
Other features in barrier-style options |
|
|
235 | (3) |
|
|
235 | (1) |
|
Repeated hitting of the barrier |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
Market practice: What volatility should I use? |
|
|
238 | (3) |
|
|
241 | (6) |
|
|
244 | (3) |
|
|
247 | (4) |
|
Fixed-Income Products and Analysis: Yield, Duration and Convexity |
|
|
251 | (24) |
|
|
252 | (1) |
|
Simple fixed-income contracts and featues |
|
|
252 | (3) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
International bond markets |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
Continuously and discretely compounded interest |
|
|
256 | (1) |
|
|
257 | (2) |
|
|
257 | (1) |
|
The yield to maturity (YTM) or internal rate of return (IRR) |
|
|
258 | (1) |
|
|
259 | (2) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (2) |
|
Time-dependent interest rate |
|
|
267 | (2) |
|
|
269 | (1) |
|
Forward rates and bootstrapping |
|
|
269 | (3) |
|
|
272 | (1) |
|
|
272 | (3) |
|
|
275 | (10) |
|
|
276 | (1) |
|
The vanilla interest rate swap |
|
|
276 | (1) |
|
|
277 | (2) |
|
|
279 | (1) |
|
Relationship between swaps and bonds |
|
|
280 | (2) |
|
|
282 | (1) |
|
Other features of swaps contracts |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
One-Factor Interest Rate Modeling |
|
|
285 | (14) |
|
|
286 | (1) |
|
Stochastic interest rates |
|
|
287 | (1) |
|
The bond pricing equation for the general model |
|
|
288 | (3) |
|
What is the market price of risk? |
|
|
291 | (1) |
|
Interpreting the market price of risk, and risk neutrality |
|
|
291 | (1) |
|
|
292 | (3) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
Equity and FX forwards and futures when rates are stochastic |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
297 | (2) |
|
Interest Rate Derivatives |
|
|
299 | (20) |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (4) |
|
|
303 | (2) |
|
|
305 | (3) |
|
|
306 | (1) |
|
The relationship between a caplet and a bond option |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
307 | (1) |
|
Step-up swaps, caps and floors |
|
|
307 | (1) |
|
|
308 | (1) |
|
Swaptions, captions and floortions |
|
|
308 | (2) |
|
|
308 | (2) |
|
|
310 | (1) |
|
Index amortizing rate swaps |
|
|
310 | (3) |
|
Other features in the index amortizing rate swap |
|
|
312 | (1) |
|
Contracts with embedded decisions |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
315 | (2) |
|
|
317 | (2) |
|
Health, Jarrow and Morton |
|
|
319 | (16) |
|
|
320 | (1) |
|
The forward rate equation |
|
|
320 | (1) |
|
|
321 | (1) |
|
The non-Markov nature of HJM |
|
|
322 | (1) |
|
|
322 | (1) |
|
|
323 | (1) |
|
The relationship between the risk-neutral forward rate drift and volatility |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
325 | (1) |
|
The Musiela parametrization |
|
|
326 | (1) |
|
|
327 | (1) |
|
A simple one-factor example: Ho & Lee |
|
|
327 | (1) |
|
Principal component analysis |
|
|
328 | (3) |
|
|
330 | (1) |
|
|
331 | (1) |
|
Nonninfinitesimal short rate |
|
|
331 | (1) |
|
The Brace, Gatarek & Musiela model |
|
|
332 | (1) |
|
|
333 | (2) |
|
|
335 | (20) |
|
|
336 | (1) |
|
|
336 | (2) |
|
|
338 | (3) |
|
|
339 | (2) |
|
|
341 | (2) |
|
Including a risk-free investment |
|
|
343 | (1) |
|
Where do I want to be on the efficient frontier? |
|
|
343 | (3) |
|
|
346 | (1) |
|
Capital Asset Pricing Model |
|
|
346 | (3) |
|
|
346 | (3) |
|
Choosing the optimal protfolio |
|
|
349 | (1) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
352 | (3) |
|
|
355 | (12) |
|
|
356 | (1) |
|
Definition of Value at Risk |
|
|
356 | (1) |
|
|
357 | (2) |
|
|
359 | (1) |
|
|
360 | (3) |
|
|
360 | (1) |
|
The delta/gamma approximation |
|
|
360 | (2) |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
363 | (2) |
|
|
363 | (1) |
|
|
363 | (2) |
|
Use of VaR as a performance measure |
|
|
365 | (1) |
|
|
365 | (2) |
|
|
367 | (16) |
|
|
368 | (1) |
|
|
368 | (1) |
|
Modeling the risk of default |
|
|
369 | (1) |
|
The Poisson process and the instantaneous risk of default |
|
|
369 | (4) |
|
|
373 | (1) |
|
Time-dependent intensity and the term structure of default |
|
|
373 | (2) |
|
Stochastic risk of default |
|
|
375 | (2) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
A model for change of credit rating |
|
|
379 | (2) |
|
|
381 | (2) |
|
RiskMetrics and CreditMetrics |
|
|
383 | (10) |
|
|
384 | (1) |
|
|
384 | (1) |
|
Calculating parameters the RiskMetrics way |
|
|
384 | (2) |
|
|
384 | (2) |
|
|
386 | (1) |
|
The CreditMetrics dataset |
|
|
386 | (3) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
The CreditMetrics methodology |
|
|
389 | (1) |
|
A portfolio of risky bonds |
|
|
389 | (1) |
|
CreditMetrics model outputs |
|
|
390 | (1) |
|
|
391 | (2) |
|
|
393 | (20) |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
394 | (2) |
|
CrashMetrics for one stock |
|
|
396 | (3) |
|
Portfolio optimization and the Platinum hedge |
|
|
398 | (1) |
|
The multi-asset/single-index model |
|
|
399 | (8) |
|
Portfolio optimization and the Platinum hedge in the multi-asset model |
|
|
406 | (1) |
|
The marginal effect of an asset |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
408 | (1) |
|
Margin calls and margin hedging |
|
|
408 | (3) |
|
|
409 | (1) |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
411 | (1) |
|
Simple extensions to CrashMetrics |
|
|
411 | (1) |
|
The CrashMetrics Index (CMI) |
|
|
411 | (1) |
|
|
412 | (1) |
|
Derivatives****Ups |
|
|
413 | (14) |
|
|
414 | (1) |
|
|
414 | (1) |
|
|
415 | (3) |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
419 | (2) |
|
|
421 | (2) |
|
Long-Term Capital Management |
|
|
423 | (3) |
|
|
426 | (1) |
|
Finite-Difference Methods for One-Factor Models |
|
|
427 | (26) |
|
|
428 | (1) |
|
|
428 | (3) |
|
Differentiation using the grid |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
432 | (2) |
|
|
434 | (1) |
|
|
435 | (1) |
|
Final conditions and payoffs |
|
|
436 | (1) |
|
|
437 | (2) |
|
The explicit finite-difference method |
|
|
439 | (9) |
|
The Black--Scholes equation |
|
|
442 | (1) |
|
Convergence of the explicit method |
|
|
442 | (6) |
|
|
448 | (2) |
|
|
450 | (3) |
|
Monte Carlo Simulation and Related Methods |
|
|
453 | (26) |
|
|
454 | (1) |
|
Relationship between derivative values and simulations; equities, indices, currencies, commodities |
|
|
454 | (3) |
|
Advantages of Monte Carlo simulation |
|
|
457 | (1) |
|
|
458 | (1) |
|
Generating normal variables |
|
|
459 | (1) |
|
Real versus risk neutral, speculation versus hedging |
|
|
459 | (4) |
|
|
463 | (2) |
|
|
465 | (1) |
|
Higher dimensions: Cholesky factorization |
|
|
466 | (1) |
|
|
467 | (1) |
|
|
467 | (1) |
|
Control variate technique |
|
|
467 | (1) |
|
Pros and cons of Monte Carlo simulations |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
Basic Monte Carlo integration |
|
|
470 | (3) |
|
Low-discrepancy sequences |
|
|
473 | (4) |
|
|
477 | (1) |
|
|
478 | (1) |
Appendix A A Trading Game |
|
479 | (6) |
|
|
479 | (1) |
|
|
479 | (1) |
|
|
479 | (1) |
|
|
479 | (1) |
|
|
480 | (1) |
|
A.6 How to fill in your trading sheet |
|
|
481 | (4) |
|
A.6.1 During a trading round |
|
|
481 | (1) |
|
A.6.2 At the end of the game |
|
|
481 | (4) |
Appendix B What You Get If (When) You Upgrade... |
|
485 | (4) |
Contents of the CD |
|
489 | (2) |
Bibliography |
|
491 | (16) |
Index |
|
507 | |