
Reinforced Concrete Mechanics and Design
by Wight, James K.; MacGregor, James G.Rent Textbook
New Textbook
We're Sorry
Sold Out
Used Textbook
We're Sorry
Sold Out
eTextbook
We're Sorry
Not Available
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
Author Biography
James K. Wight received his B.S. and M.S. degrees in civil engineering from Michigan State University in 1969 and 1970, respectively, and his Ph.D. from the University of Illinois in 1973. He has been a professor of structural engineering in the Civil and Environmental Engineering Department at the University of Michigan since 1973. He teaches undergraduate and graduate classes on analysis and design of reinforced concrete structures. He is well known for his work in earthquake-resistant design of concrete structures and spent a one-year sabbatical leave in Japan where he was involved in the construction and simulated earthquake testing of a full-scale reinforced concrete building. Professor Wight has been an active member of the American Concrete Institute (ACI) since 1973 and was named a Fellow of the Institute in 1984. He is currently the Senior Vice President of ACI and the immediate past Chair of the ACI Building Code Committee 318. He is also past Chair of the ACI Technical Activities Committee and Committee 352 on Joints and Connections in Concrete Structures. He has received several awards from the American Concrete Institute including the Delmar Bloem Distinguished Service Award (1991), the Joe Kelly Award (1999), the Boise Award (2002), the C.P. Siess Structural Research Award (2003 and 2009), and the Alfred Lindau Award (2008). Professor Wight has received numerous awards for his teaching and service at the University of Michigan including the ASCE Student Chapter Teacher of the Year Award, the College of Engineering Distinguished Service Award, the College of Engineering Teaching Excellence Award, the Chi Epsilon-Great Lakes District Excellence in Teaching Award, and the Rackham Distinguished Graduate Mentoring Award. He has received Distinguished Alumnus Awards from the Civil and Environmental Engineering Departments of the University of Illinois (2008) and Michigan State University (2009).
James G. MacGregor, University Professor of Civil Engineering at the University of Alberta, Canada, retired in 1993 after 33 years of teaching, research, and service, including three years as Chair of the Department of Civil Engineering. He has a B.Sc. from the University of Alberta and a M.S. and Ph.D. from the University of Illinois. In 1998 and 1999 he received a Doctor of Engineering (Hon) from Lakehead University, and in 1999 a Doctor of Science (Hon) from the University of Alberta. Dr. MacGregor is a Fellow of the Academy of Science of the Royal Society of Canada and a Fellow of the Canadian Academy of Engineering. A Past President and Honorary Member of the American Concrete Institute, Dr. MacGregor has been an active member of ACI since 1958. He has served on ACI technical committees including the ACI Building Code Committee and its subcommittees on flexure, shear, and stability and the ACI Technical Activities Committee. This involvement and his research has been recognized by honors jointly awarded to MacGregor, his colleagues, and students. These included the ACI Wason Medal for the Most Meritorious Paper (1972, and 1999), the ACI Raymond C. Reese Medal, and the ACI Structural Research Award (1972 and 1999). His work on the developing the Strut-and-Tie model for the ACI Code was recognized by the ACI Structural Research Award (2004). In addition, he has received several ASCE Awards, including the prestigious ASCE Norman Medal with three colleagues (1983). Dr. MacGregor chaired the Canadian Committee on Reinforced Concrete Design from 1977 through 1989, moving on to chair the Standing Committee on Structural Design for the National Building Code of Canada from 1990 through 1995. From 1973 to 1976 he was a member of the Council of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta. At the time of his retirement from the University of Alberta, Professor MacGregor was a principal in MKM Engineering Consultants. His last project with that firm was the derivation of site-specific load and resistance factors for an eight-mile long concrete bridge.
Table of Contents
PREFACE xi
ABOUT THE AUTHORS xv
CHAPTER 1 INTRODUCTION
1-1 Reinforced Concrete Structures
1-2 Mechanics of Reinforced Concrete
1-3 Reinforced Concrete Members
1-4 Factors Affecting Choice of Reinforced Concrete for a Structure
1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials
1-6 Building Codes and the ACI Code
CHAPTER 2 THE DESIGN PROCESS
2-1 Objectives of Design
2-2 The Design Process
2-3 Limit States and the Design of Reinforced Concrete
2-4 Structural Safety
2-5 Probabilistic Calculation of Safety Factors
2-6 Design Procedures Specified in the ACI Building Code
2-7 Load Factors and Load Combinations in the 2011 ACI Code
2-8 Loadings and Actions
2-9 Design for Economy
2-10 Sustainability
2-11 Customary Dimensions and Construction Tolerances
2-12 Inspection
2-13 Accuracy of Calculations
2-14 Handbooks and Design Aids
CHAPTER 3 MATERIALS
3-1 Concrete
3-2 Behavior of Concrete Failing in Compression
3-3 Compressive Strength of Concrete
3-4 Strength Under Tensile and Multiaxial Loads
3-5 Stress–Strain Curves for Concrete
3-6 Time-Dependent Volume Changes
3-7 High-Strength Concrete
3-8 Lightweight Concrete
3-9 Fiber Reinforced Concrete
3-10 Durability of Concrete
3-11 Behavior of Concrete Exposed to High and Low Temperatures
3-12 Shotcrete
3-13 High-Alumina Cement
3-14 Reinforcement
3-15 Fiber-Reinforced Polymer (FRP) Reinforcement
3-16 Prestressing Steel
CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS
4-1 Introduction
4-2 Flexure Theory
4-3 Simplifications in Flexure Theory for Design
4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections
4-5 Definition of Balanced Conditions
4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections
4-7 Beams with Compression Reinforcement
4-8 Analysis of Flanged Sections
4-9 Unsymmetrical Beam Sections
CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS
5-1 Introduction
5-2 Analysis of Continuous One-Way Floor Systems
5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones
5-4 Design of Doubly-Reinforced Beam Sections
5-5 Design of Continuous One-Way Slabs
CHAPTER 6 SHEAR IN BEAMS
6-1 Introduction
6-2 Basic Theory
6-3 Behavior of Beams Failing in Shear
6-4 Truss Model of the Behavior of Slender Beams Failing in Shear
6-5 Analysis and Design of Reinforced Concrete Beams for Shear–ACI Code
6-6 Other Shear Design Methods
6-7 Hanger Reinforcement
6-8 Tapered Beams
6-9 Shear in Axially Loaded Members
6-10 Shear in Seismic Regions
CHAPTER 7 TORSION
7-1 Introduction and Basic Theory
7-2 Behavior of Reinforced Concrete Members Subjected to Torsion
7-3 Design Methods for Torsion
7-4 Thin-Walled Tube/Plastic Space Truss Design Method
7-5 Design for Torsion and Shear–ACI Code
7-6 Application of ACI Code Design Method for Torsion
CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT
8-1 Introduction
8-2 Mechanism of Bond Transfer
8-3 Development Length
8-4 Hooked Anchorages
8-5 Headed and Mechanically Anchored Bars in Tension
8-6 Design for Anchorage
8-7 Bar Cutoffs and Development of Bars in Flexural Members
8-8 Reinforcement Continuity and Structural Integrity Requirements
8-9 Splices
CHAPTER 9 SERVICEABILITY
9-1 Introduction
9-2 Elastic Analysis of Stresses in Beam Sections
9-3 Cracking
9-4 Deflections of Concrete Beams
9-5 Consideration of Deflections in Design
9-6 Frame Deflections
9-7 Vibrations
9-8 Fatigue
CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS
10-1 Introduction
10-2 Continuity in Reinforced Concrete Structures
10-3 Continuous Beams
10-4 Design of Girders
10-5 Joist Floors
10-6 Moment Redistribution
CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING
11-1 Introduction
11-2 Tied and Spiral Columns
11-3 Interaction Diagrams
11-4 Interaction Diagrams for Reinforced Concrete Columns
11-5 Design of Short Columns
11-6 Contributions of Steel and Concrete to Column Strength
11-7 Biaxially Loaded Columns
CHAPTER 12 SLENDER COLUMNS
12-1 Introduction
12-2 Behavior and Analysis of Pin-Ended Columns
12-3 Behavior of Restrained Columns in Nonsway Frames
12-4 Design of Columns in Nonsway Frames
12-5 Behavior of Restrained Columns in Sway Frames
12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses
12-7 Design of Columns in Sway Frames
12-8 General Analysis of Slenderness Effects
12-9 Torsional Critical Load
CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN
13-1 Introduction
13-2 History of Two-Way Slabs
13-3 Behavior of Slabs Loaded to Failure in Flexure
13-4 Analysis of Moments in Two-Way Slabs
13-5 Distribution of Moments in Slabs
13-6 Design of Slabs
13-7 The Direct-Design Method
13-8 Equivalent-Frame Methods
13-9 Use of Computers for an Equivalent-Frame Analysis
13-10 Shear Strength of Two-Way Slabs
13-11 Combined Shear and Moment Transfer in Two-Way Slabs
13-12 Details and Reinforcement Requirements
13-13 Design of Slabs Without Beams
13-14 Design of Slabs with Beams in Two Directions
13-15 Construction Loads on Slabs
13-16 Deflections in Two-Way Slab Systems
13-17 Use of Post-Tensioning
CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES
14-1 Review of Elastic Analysis of Slabs
14-2 Design Moments from a Finite-Element Analysis
14-3 Yield-Line Analysis of Slabs: Introduction
14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels
14-5 Yield-Line Patterns at Discontinuous Corners
14-6 Yield-Line Patterns at Columns or at Concentrated Loads
CHAPTER 15 FOOTINGS
15-1 Introduction
15-2 Soil Pressure Under Footings
15-3 Structural Action of Strip and Spread Footings
15-4 Strip or Wall Footings
15-5 Spread Footings
15-6 Combined Footings
15-7 Mat Foundations
15-8 Pile Caps
CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS
16-1 Introduction
16-2 Shear Friction
16-3 Composite Concrete Beams
CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS
17-1 Introduction
17-2 Design Equation and Method of Solution
17-3 Struts
17-4 Ties
17-5 Nodes and Nodal Zones
17-6 Common Strut-and-Tie Models
17-7 Layout of Strut-and-Tie Models
17-8 Deep Beams
17-9 Continuous Deep Beams
17-10 Brackets and Corbels
17-11 Dapped Ends
17-12 Beam–Column Joints
17-13 Bearing Strength
17-14 T-Beam Flanges
CHAPTER 18 WALLS AND SHEAR WALLS
18-1 Introduction
18-2 Bearing Walls
18-3 Retaining Walls
18-4 Tilt-Up Walls
18-5 Shear Walls
18-6 Lateral Load-Resisting Systems for Buildings
18-7 Shear Wall—Frame Interaction
18-8 Coupled Shear Walls
18-9 Design of Structural Walls–General
18-10 Flexural Strength of Shear Walls
18-11 Shear Strength of Shear Walls
18-12 Critical Loads for Axially Loaded Walls
CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE
19-1 Introduction
19-2 Seismic Response Spectra
19-3 Seismic Design Requirements
19-4 Seismic Forces on Structures
19-5 Ductility of Reinforced Concrete Members
19-6 General ACI Code Provisions for Seismic Design
19-7 Flexural Members in Special Moment Frames
19-8 Columns in Special Moment Frames
19-9 Joints of Special Moment Frames
19-10 Structural Diaphragms
19-11 Structural Walls
19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions
19-13 Special Precast Structures
19-14 Foundations
APPENDIX A
APPENDIX B
INDEX
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.