|
|
xi | |
|
|
xv | |
Preface |
|
xvii | |
Foreword |
|
xxi | |
Foreword |
|
xxiii | |
|
Introduction to Spatial Databases |
|
|
1 | (21) |
|
|
1 | (1) |
|
Who Can Benefit from Spatial Data Management? |
|
|
2 | (1) |
|
|
3 | (1) |
|
Three Classes of Users for Spatial Databases |
|
|
4 | (1) |
|
An Example of an SDBMS Application |
|
|
5 | (6) |
|
Stroll through Spatial Databases |
|
|
11 | (9) |
|
Space Taxonomy and Data Models |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (3) |
|
File Organization and Indices |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (2) |
|
|
20 | (2) |
|
Spatial Concepts and Data Models |
|
|
22 | (30) |
|
Models of Spatial Information |
|
|
23 | (11) |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
26 | (1) |
|
Operations on Spatial Objects |
|
|
27 | (4) |
|
Dynamic Spatial Operations |
|
|
31 | (1) |
|
Mapping Spatial Objects into Java |
|
|
32 | (2) |
|
Three-Step Database Design |
|
|
34 | (7) |
|
|
35 | (2) |
|
|
37 | (1) |
|
Mapping the ER Model to the Relational Model |
|
|
38 | (3) |
|
Trends: Extending the ER Model with Spatial Concepts |
|
|
41 | (4) |
|
Extending the ER Model with Pictograms |
|
|
41 | (4) |
|
Trends: Object-Oriented Data Modeling with UML |
|
|
45 | (3) |
|
Comparison between ER and UML |
|
|
47 | (1) |
|
|
48 | (4) |
|
|
49 | (3) |
|
|
52 | (31) |
|
Standard Database Query Languages |
|
|
53 | (2) |
|
|
53 | (2) |
|
|
55 | (4) |
|
The Select and Project Operations |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (2) |
|
|
59 | (5) |
|
|
59 | (1) |
|
|
60 | (1) |
|
Basic Form of an SQL Query |
|
|
60 | (1) |
|
|
61 | (3) |
|
|
64 | (1) |
|
Extending SQL for Spatial Data |
|
|
64 | (3) |
|
The OGIS Standard for Extending SQL |
|
|
65 | (1) |
|
Limitations of the Standard |
|
|
66 | (1) |
|
Example Queries that Emphasize Spatial Aspects |
|
|
67 | (4) |
|
Trends: Object-Relational SQL |
|
|
71 | (4) |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
75 | (4) |
|
|
76 | (3) |
|
Appendix: State Park Database |
|
|
79 | (4) |
|
|
80 | (3) |
|
Spatial Storage and Indexing |
|
|
83 | (31) |
|
|
84 | (12) |
|
Disk Geometry and Implications |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (6) |
|
|
96 | (8) |
|
|
97 | (2) |
|
|
99 | (4) |
|
|
103 | (1) |
|
|
104 | (7) |
|
TR*-Tree for Object Decomposition |
|
|
104 | (1) |
|
|
105 | (2) |
|
|
107 | (4) |
|
|
111 | (3) |
|
|
111 | (3) |
|
Query Processing and Optimization |
|
|
114 | (35) |
|
Evaluation of Spatial Operations |
|
|
115 | (7) |
|
|
115 | (1) |
|
|
115 | (1) |
|
Two-Step Query Processing of Object Operations |
|
|
116 | (1) |
|
Techniques for Spatial Selection |
|
|
117 | (1) |
|
General Spatial Selection |
|
|
118 | (1) |
|
Algorithms for Spatial-Join Operations |
|
|
119 | (3) |
|
Strategies for Spatial Aggregate Operation: Nearest Neighbor |
|
|
122 | (1) |
|
|
122 | (7) |
|
|
124 | (3) |
|
Cost-Based Optimization: Dynamic Programming |
|
|
127 | (2) |
|
Analysis of Spatial Index Structures |
|
|
129 | (3) |
|
Enumeration of Alternate Plans |
|
|
131 | (1) |
|
Decomposition and Merge in Hybrid Architecture |
|
|
132 | (1) |
|
Distributed Spatial Database Systems |
|
|
132 | (6) |
|
Distributed DBMS Architecture |
|
|
134 | (1) |
|
|
135 | (1) |
|
Web-Based Spatial Database Systems |
|
|
136 | (2) |
|
Parallel Spatial Database Systems |
|
|
138 | (7) |
|
|
139 | (1) |
|
Parallel Query Evaluation |
|
|
140 | (2) |
|
Application: Real-Time Terrain Visualization |
|
|
142 | (3) |
|
|
145 | (4) |
|
|
146 | (3) |
|
|
149 | (33) |
|
Example Network Databases |
|
|
149 | (2) |
|
Conceptual, Logical, and Physical Data Models |
|
|
151 | (6) |
|
|
151 | (3) |
|
|
154 | (3) |
|
Query Language for Graphs |
|
|
157 | (8) |
|
|
158 | (1) |
|
|
159 | (2) |
|
Example Queries on the BART System |
|
|
161 | (2) |
|
|
163 | (1) |
|
Trends: SQL3 ADTs for Networks |
|
|
164 | (1) |
|
|
165 | (8) |
|
|
166 | (1) |
|
Graph Traversal Algorithms |
|
|
166 | (3) |
|
Best-First Algorithm for Single Pair (v, d) Shortest Path |
|
|
169 | (1) |
|
Trends: Hierarchical Strategies |
|
|
170 | (3) |
|
Trends: Access Methods for Spatial Networks |
|
|
173 | (9) |
|
A Measure of I/O Cost for Network Operations |
|
|
174 | (2) |
|
Graph-Partitioning Approach to Reduce Disk I/O |
|
|
176 | (1) |
|
CCAM: A Connectivity Clustered Access Method for Spatial Network |
|
|
177 | (2) |
|
|
179 | (1) |
|
|
179 | (3) |
|
Introduction to Spatial Data Mining |
|
|
182 | (45) |
|
|
183 | (4) |
|
|
183 | (2) |
|
Statistics and Data Mining |
|
|
185 | (1) |
|
Data Mining as a Search Problem |
|
|
185 | (1) |
|
Unique Features of Spatial Data Mining |
|
|
185 | (1) |
|
Famous Historical Examples of Spatial Data Exploration |
|
|
186 | (1) |
|
Motivating Spatial Data Mining |
|
|
187 | (7) |
|
An Illustrative Application Domain |
|
|
187 | (2) |
|
Measures of Spatial Form and Auto-correlation |
|
|
189 | (2) |
|
Spatial Statistical Models |
|
|
191 | (2) |
|
|
193 | (1) |
|
Classification Techniques |
|
|
194 | (8) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (2) |
|
Predicting Location Using Map Similarity (PLUMS) |
|
|
198 | (1) |
|
|
198 | (4) |
|
Association Rule Discovery Techniques |
|
|
202 | (4) |
|
Apriori: An Algorithm for Calculating Frequent Itemsets |
|
|
202 | (2) |
|
Spatial Association Rules |
|
|
204 | (1) |
|
|
204 | (2) |
|
|
206 | (9) |
|
K-medoid: An Algorithm for Clustering |
|
|
209 | (1) |
|
Clustering, Mixture Analysis, and the EM Algorithm |
|
|
210 | (3) |
|
Strategies for Clustering Large Spatial Databases |
|
|
213 | (2) |
|
Spatial Outlier Detection |
|
|
215 | (6) |
|
|
221 | (1) |
|
Appendix: Bayesian Calculus |
|
|
221 | (6) |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
222 | (5) |
|
Trends in Spatial Databases |
|
|
227 | (23) |
|
Database Support for Field Entities |
|
|
227 | (6) |
|
Raster and Image Operations |
|
|
228 | (3) |
|
|
231 | (2) |
|
|
233 | (4) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
Attribute Relational Graphs |
|
|
235 | (2) |
|
|
237 | (1) |
|
Introduction to Spatial Data Warehouses |
|
|
237 | (9) |
|
|
238 | (2) |
|
An Example of Geometric Aggregation |
|
|
240 | (2) |
|
|
242 | (3) |
|
What Is an Aggregation Hierarchy Used For? |
|
|
245 | (1) |
|
|
246 | (4) |
|
|
246 | (4) |
Bibliography |
|
250 | (8) |
Index |
|
258 | |