| Preface |
|
ix | |
| Acknowledgements |
|
xii | |
| Glossary |
|
xiii | |
| 1 Introduction |
|
1 | (9) |
| 2 Probability |
|
10 | (72) |
|
|
|
10 | (4) |
|
2.2 Spinning pointers and flipping coins |
|
|
14 | (8) |
|
|
|
22 | (22) |
|
2.4 Discrete probability spaces |
|
|
44 | (10) |
|
2.5 Continuous probability spaces |
|
|
54 | (14) |
|
|
|
68 | (2) |
|
2.7 Elementary conditional probability |
|
|
70 | (3) |
|
|
|
73 | (9) |
| 3 Random variables, vectors, and processes |
|
82 | (100) |
|
|
|
82 | (11) |
|
|
|
93 | (9) |
|
3.3 Distributions of random variables |
|
|
102 | (10) |
|
3.4 Random vectors and random processes |
|
|
112 | (3) |
|
3.5 Distributions of random vectors |
|
|
115 | (9) |
|
3.6 Independent random variables |
|
|
124 | (3) |
|
3.7 Conditional distributions |
|
|
127 | (5) |
|
3.8 Statistical detection and classification |
|
|
132 | (3) |
|
|
|
135 | (7) |
|
3.10 Binary detection in Gaussian noise |
|
|
142 | (2) |
|
3.11 Statistical estimation |
|
|
144 | (1) |
|
3.12 Characteristic functions |
|
|
145 | (6) |
|
3.13 Gaussian random vectors |
|
|
151 | (1) |
|
3.14 Simple random processes |
|
|
152 | (4) |
|
3.15 Directly given random processes |
|
|
156 | (2) |
|
3.16 Discrete time Markov processes |
|
|
158 | (9) |
|
3.17 *Nonelementary conditional probability |
|
|
167 | (1) |
|
|
|
168 | (14) |
| 4 Expectation and averages |
|
182 | (93) |
|
|
|
182 | (3) |
|
|
|
185 | (3) |
|
4.3 Functions of random variables |
|
|
188 | (7) |
|
4.4 Functions of several random variables |
|
|
195 | (1) |
|
4.5 Properties of expectation |
|
|
195 | (2) |
|
|
|
197 | (9) |
|
4.7 Conditional expectation |
|
|
206 | (3) |
|
4.8 *Jointly Gaussian vectors |
|
|
209 | (2) |
|
4.9 Expectation as estimation |
|
|
211 | (7) |
|
4.10 *Implications for linear estimation |
|
|
218 | (3) |
|
4.11 Correlation and linear estimation |
|
|
221 | (7) |
|
4.12 Correlation and covariance functions |
|
|
228 | (3) |
|
4.13 *The central limit theorem |
|
|
231 | (3) |
|
|
|
234 | (2) |
|
4.15 Convergence of random variables |
|
|
236 | (7) |
|
4.16 Weak law of large numbers |
|
|
243 | (2) |
|
4.17 *Strong law of large numbers |
|
|
245 | (4) |
|
|
|
249 | (6) |
|
4.19 Asymptotically uncorrelated processes |
|
|
255 | (3) |
|
|
|
258 | (17) |
| 5 Second-order theory |
|
275 | (88) |
|
5.1 Linear filtering of random processes |
|
|
276 | (2) |
|
5.2 Linear systems I/O relations |
|
|
278 | (6) |
|
5.3 Power spectral densities |
|
|
284 | (2) |
|
5.4 Linearly filtered uncorrelated processes |
|
|
286 | (6) |
|
|
|
292 | (4) |
|
|
|
296 | (3) |
|
|
|
299 | (4) |
|
5.8 *Mean square calculus |
|
|
303 | (28) |
|
5.9 *Linear estimation and filtering |
|
|
331 | (18) |
|
|
|
349 | (14) |
| 6 A menagerie of processes |
|
363 | (48) |
|
6.1 Discrete time linear models |
|
|
364 | (5) |
|
6.2 Sums of iid random variables |
|
|
369 | (1) |
|
6.3 Independent stationary increment processes |
|
|
370 | (3) |
|
6.4 *Second-order moments of isi processes |
|
|
373 | (3) |
|
6.5 Specification of continuous time isi processes |
|
|
376 | (2) |
|
6.6 Moving-average and autoregressive processes |
|
|
378 | (2) |
|
6.7 The discrete time Gauss-Markov process |
|
|
380 | (1) |
|
6.8 Gaussian random processes |
|
|
381 | (1) |
|
6.9 The Poisson counting process |
|
|
382 | (3) |
|
|
|
385 | (1) |
|
6.11 Composite random processes |
|
|
386 | (1) |
|
6.12 *Exponential modulation |
|
|
387 | (5) |
|
|
|
392 | (3) |
|
|
|
395 | (3) |
|
|
|
398 | (2) |
|
|
|
400 | (11) |
| Appendix A Preliminaries |
|
411 | (25) |
|
|
|
411 | (7) |
|
|
|
418 | (4) |
|
A.3 Mappings and functions |
|
|
422 | (1) |
|
|
|
423 | (4) |
|
A.5 Linear system fundamentals |
|
|
427 | (4) |
|
|
|
431 | (5) |
| Appendix B Sums and integrals |
|
436 | (10) |
|
|
|
436 | (3) |
|
|
|
439 | (2) |
|
|
|
441 | (2) |
|
B.4 *The Lebesgue integral |
|
|
443 | (3) |
| Appendix C Common univariate distributions |
|
446 | (2) |
| Appendix D Supplementary reading |
|
448 | (5) |
| References |
|
453 | (4) |
| Index |
|
457 | |